This is an archived version pinned as of the submission of my master's thesis. An up-to-date version may be found online.
Maps between noncoherent wild higher precategories
{-# OPTIONS --guardedness #-} module wild-category-theory.maps-noncoherent-wild-higher-precategories where
Imports
open import foundation.dependent-pair-types open import foundation.function-types open import foundation.identity-types open import foundation.universe-levels open import structured-types.globular-types open import structured-types.maps-globular-types open import wild-category-theory.noncoherent-wild-higher-precategories
Idea
A
map¶
f
between
noncoherent wild higher precategories
𝒜
and ℬ
consists of a map on objects F₀ : obj 𝒜 → obj ℬ
, and for every
pair of -morphisms f
and g
, a map of -morphisms
Fₙ₊₁ : (𝑛+1)-hom 𝒞 f g → (𝑛+1)-hom 𝒟 (Fₙ f) (Fₙ g).
A map between noncoherent wild higher precategories does not have to preserve the identities or composition in any shape or form, and is the least structured notion of a "morphism" between noncoherent wild higher precategories. For a notion of "morphism" between noncoherent wild higher precategories that in one sense preserves this additional structure, see colax functors between noncoherent wild higher precategories.
Definitions
Maps between noncoherent wild higher precategories
record map-Noncoherent-Wild-Higher-Precategory {l1 l2 l3 l4 : Level} (𝒜 : Noncoherent-Wild-Higher-Precategory l1 l2) (ℬ : Noncoherent-Wild-Higher-Precategory l3 l4) : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) where field obj-map-Noncoherent-Wild-Higher-Precategory : obj-Noncoherent-Wild-Higher-Precategory 𝒜 → obj-Noncoherent-Wild-Higher-Precategory ℬ hom-globular-type-map-Noncoherent-Wild-Higher-Precategory : {x y : obj-Noncoherent-Wild-Higher-Precategory 𝒜} → map-Globular-Type ( hom-globular-type-Noncoherent-Wild-Higher-Precategory 𝒜 x y) ( hom-globular-type-Noncoherent-Wild-Higher-Precategory ℬ ( obj-map-Noncoherent-Wild-Higher-Precategory x) ( obj-map-Noncoherent-Wild-Higher-Precategory y)) open map-Noncoherent-Wild-Higher-Precategory public module _ {l1 l2 l3 l4 : Level} {𝒜 : Noncoherent-Wild-Higher-Precategory l1 l2} {ℬ : Noncoherent-Wild-Higher-Precategory l3 l4} (F : map-Noncoherent-Wild-Higher-Precategory 𝒜 ℬ) where hom-map-Noncoherent-Wild-Higher-Precategory : {x y : obj-Noncoherent-Wild-Higher-Precategory 𝒜} → hom-Noncoherent-Wild-Higher-Precategory 𝒜 x y → hom-Noncoherent-Wild-Higher-Precategory ℬ ( obj-map-Noncoherent-Wild-Higher-Precategory F x) ( obj-map-Noncoherent-Wild-Higher-Precategory F y) hom-map-Noncoherent-Wild-Higher-Precategory = 0-cell-map-Globular-Type ( hom-globular-type-map-Noncoherent-Wild-Higher-Precategory F) 2-hom-map-Noncoherent-Wild-Higher-Precategory : {x y : obj-Noncoherent-Wild-Higher-Precategory 𝒜} {f g : hom-Noncoherent-Wild-Higher-Precategory 𝒜 x y} → 2-hom-Noncoherent-Wild-Higher-Precategory 𝒜 f g → 2-hom-Noncoherent-Wild-Higher-Precategory ℬ ( hom-map-Noncoherent-Wild-Higher-Precategory f) ( hom-map-Noncoherent-Wild-Higher-Precategory g) 2-hom-map-Noncoherent-Wild-Higher-Precategory = 1-cell-map-Globular-Type ( hom-globular-type-map-Noncoherent-Wild-Higher-Precategory F) hom-noncoherent-wild-higher-precategory-map-Noncoherent-Wild-Higher-Precategory : (x y : obj-Noncoherent-Wild-Higher-Precategory 𝒜) → map-Noncoherent-Wild-Higher-Precategory ( hom-noncoherent-wild-higher-precategory-Noncoherent-Wild-Higher-Precategory ( 𝒜) ( x) ( y)) ( hom-noncoherent-wild-higher-precategory-Noncoherent-Wild-Higher-Precategory ( ℬ) ( obj-map-Noncoherent-Wild-Higher-Precategory F x) ( obj-map-Noncoherent-Wild-Higher-Precategory F y)) hom-noncoherent-wild-higher-precategory-map-Noncoherent-Wild-Higher-Precategory x y = λ where .obj-map-Noncoherent-Wild-Higher-Precategory → hom-map-Noncoherent-Wild-Higher-Precategory .hom-globular-type-map-Noncoherent-Wild-Higher-Precategory → globular-type-1-cell-map-Globular-Type ( hom-globular-type-map-Noncoherent-Wild-Higher-Precategory F)
The identity map on a noncoherent wild higher precategory
module _ {l1 l2 : Level} (𝒜 : Noncoherent-Wild-Higher-Precategory l1 l2) where id-map-Noncoherent-Wild-Higher-Precategory : map-Noncoherent-Wild-Higher-Precategory 𝒜 𝒜 id-map-Noncoherent-Wild-Higher-Precategory = λ where .obj-map-Noncoherent-Wild-Higher-Precategory → id .hom-globular-type-map-Noncoherent-Wild-Higher-Precategory → id-map-Globular-Type _
Composition of maps between noncoherent wild higher precategories
module _ {l1 l2 l3 l4 l5 l6 : Level} {𝒜 : Noncoherent-Wild-Higher-Precategory l1 l2} {ℬ : Noncoherent-Wild-Higher-Precategory l3 l4} {𝒞 : Noncoherent-Wild-Higher-Precategory l5 l6} (G : map-Noncoherent-Wild-Higher-Precategory ℬ 𝒞) (F : map-Noncoherent-Wild-Higher-Precategory 𝒜 ℬ) where comp-map-Noncoherent-Wild-Higher-Precategory : map-Noncoherent-Wild-Higher-Precategory 𝒜 𝒞 comp-map-Noncoherent-Wild-Higher-Precategory = λ where .obj-map-Noncoherent-Wild-Higher-Precategory → obj-map-Noncoherent-Wild-Higher-Precategory G ∘ obj-map-Noncoherent-Wild-Higher-Precategory F .hom-globular-type-map-Noncoherent-Wild-Higher-Precategory → comp-map-Globular-Type ( hom-globular-type-map-Noncoherent-Wild-Higher-Precategory G) ( hom-globular-type-map-Noncoherent-Wild-Higher-Precategory F)