This is an archived version pinned as of the submission of my master's thesis. An up-to-date version may be found online.
Semisimple commutative finite rings
module finite-algebra.semisimple-commutative-finite-rings where
Imports
open import elementary-number-theory.natural-numbers open import finite-algebra.commutative-finite-rings open import finite-algebra.dependent-products-commutative-finite-rings open import finite-algebra.finite-fields open import finite-algebra.homomorphisms-commutative-finite-rings open import foundation.dependent-pair-types open import foundation.existential-quantification open import foundation.function-types open import foundation.functoriality-dependent-pair-types open import foundation.propositional-truncations open import foundation.universe-levels open import univalent-combinatorics.finite-types open import univalent-combinatorics.standard-finite-types
Idea
A semisimple commutative finite rings is a commutative finie rings wich is merely equivalent to an iterated cartesian product of finite fields.
Definitions
Semisimple commutative finite rings
is-semisimple-Commutative-Ring-𝔽 : {l1 : Level} (l2 : Level) → Commutative-Ring-𝔽 l1 → UU (l1 ⊔ lsuc l2) is-semisimple-Commutative-Ring-𝔽 l2 R = exists ( ℕ) ( λ n → ∃ ( Fin n → Field-𝔽 l2) ( λ A → trunc-Prop ( hom-Commutative-Ring-𝔽 ( R) ( Π-Commutative-Ring-𝔽 ( Fin n , is-finite-Fin n) ( commutative-finite-ring-Field-𝔽 ∘ A))))) Semisimple-Commutative-Ring-𝔽 : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2) Semisimple-Commutative-Ring-𝔽 l1 l2 = Σ (Commutative-Ring-𝔽 l1) (is-semisimple-Commutative-Ring-𝔽 l2) module _ {l1 l2 : Level} (A : Semisimple-Commutative-Ring-𝔽 l1 l2) where commutative-finite-ring-Semisimple-Commutative-Ring-𝔽 : Commutative-Ring-𝔽 l1 commutative-finite-ring-Semisimple-Commutative-Ring-𝔽 = pr1 A
Properties
The number of ways to equip a finite type with the structure of a semisimple commutative ring is finite
module _ {l1 : Level} (l2 : Level) (X : 𝔽 l1) where structure-semisimple-commutative-ring-𝔽 : UU (l1 ⊔ lsuc l2) structure-semisimple-commutative-ring-𝔽 = Σ ( structure-commutative-ring-𝔽 X) ( λ r → is-semisimple-Commutative-Ring-𝔽 ( l2) ( finite-commutative-ring-structure-commutative-ring-𝔽 X r)) finite-semisimple-commutative-ring-structure-semisimple-commutative-ring-𝔽 : structure-semisimple-commutative-ring-𝔽 → Semisimple-Commutative-Ring-𝔽 l1 l2 finite-semisimple-commutative-ring-structure-semisimple-commutative-ring-𝔽 = map-Σ-map-base ( finite-commutative-ring-structure-commutative-ring-𝔽 X) ( is-semisimple-Commutative-Ring-𝔽 l2)