This is an archived version pinned as of the submission of my master's thesis. An up-to-date version may be found online.
Transitive multisets
module trees.transitive-multisets where
Imports
open import foundation.universe-levels open import trees.multisets open import trees.submultisets
Idea
A multiset x is said to be transitive if y ⊑-𝕍 x for every y ∈-𝕍 x.
That is, x is transitive if for every z ∈-𝕍 y ∈-𝕍 x we have
z ∈-𝕍 y ≃ z ∈-𝕍 x.
Similarly, we say that x is weakly transitive if y ⊆-𝕍 x for every
y ∈-𝕍 x. That is, x is weakly transitive if for every z ∈-𝕍 y ∈-𝕍 x we
have z ∈-𝕍 y ↪ z ∈-𝕍 x.
Definition
Transitive multisets
is-transitive-𝕍 : {l : Level} → 𝕍 l → UU (lsuc l) is-transitive-𝕍 {l} x = (y : 𝕍 l) → y ∈-𝕍 x → y ⊑-𝕍 x
Wealky transitive multisets
is-weakly-transitive-𝕍 : {l : Level} → 𝕍 l → UU (lsuc l) is-weakly-transitive-𝕍 {l} x = (y : 𝕍 l) → y ∈-𝕍 x → y ⊆-𝕍 x