This is an archived version pinned as of the submission of my master's thesis. An up-to-date version may be found online.
The opposite of a group
module group-theory.opposite-groups where
Imports
open import foundation.dependent-pair-types open import foundation.universe-levels open import group-theory.groups open import group-theory.isomorphisms-groups open import group-theory.monoids open import group-theory.opposite-semigroups
Idea
The opposite of a group G
with multiplication
μ
is a group with the same underlying set as G
and multiplication given by x y ↦ μ y x
.
Definition
module _ {l : Level} (G : Group l) where is-unital-op-Group : is-unital-Semigroup (op-Semigroup (semigroup-Group G)) pr1 is-unital-op-Group = unit-Group G pr1 (pr2 is-unital-op-Group) = right-unit-law-mul-Group G pr2 (pr2 is-unital-op-Group) = left-unit-law-mul-Group G is-group-op-Group : is-group-Semigroup (op-Semigroup (semigroup-Group G)) pr1 is-group-op-Group = is-unital-op-Group pr1 (pr2 is-group-op-Group) = inv-Group G pr1 (pr2 (pr2 is-group-op-Group)) = right-inverse-law-mul-Group G pr2 (pr2 (pr2 is-group-op-Group)) = left-inverse-law-mul-Group G op-Group : Group l pr1 op-Group = op-Semigroup (semigroup-Group G) pr2 op-Group = is-group-op-Group
Properties
The opposite group of G
is isomorphic to G
module _ {l : Level} (G : Group l) where equiv-inv-Group : equiv-Group G (op-Group G) pr1 equiv-inv-Group = equiv-equiv-inv-Group G pr2 equiv-inv-Group = distributive-inv-mul-Group G iso-inv-Group : iso-Group G (op-Group G) iso-inv-Group = iso-equiv-Group G (op-Group G) equiv-inv-Group