This is an archived version pinned as of the submission of my master's thesis. An up-to-date version may be found online.
Preunivalent categories
module category-theory.preunivalent-categories where
Imports
open import category-theory.composition-operations-on-binary-families-of-sets open import category-theory.isomorphisms-in-precategories open import category-theory.precategories open import foundation.1-types open import foundation.cartesian-product-types open import foundation.dependent-pair-types open import foundation.embeddings open import foundation.identity-types open import foundation.propositions open import foundation.sets open import foundation.strictly-involutive-identity-types open import foundation.universe-levels
Idea
A preunivalent category is a precategory
for which the identifications between the
objects embed into the
isomorphisms. More
specifically, an equality between objects gives rise to an isomorphism between
them, by the J-rule. A precategory is a preunivalent category if this function,
called iso-eq
, is an embedding.
The idea of preunivalence is that it is a common generalization of univalent mathematics and mathematics with Axiom K. Hence preunivalent categories generalize both (univalent) categories and strict categories, which are precategories whose objects form a set.
The preunivalence condition on precategories states that the type of objects is a subgroupoid of the groupoid of isomorphisms. For univalent categories the groupoid of objects is equivalent to the groupoid of isomorphisms, while for strict categories the groupoid of objects is discrete. Indeed, in this sense preunivalence provides a generalization of both notions of "category", with no more structure. This is opposed to the even more general notion of precategory, where the homotopy structure on the objects can be almost completely unrelated to the homotopy structure of the morphisms.
Definitions
The predicate on precategories of being a preunivalent category
module _ {l1 l2 : Level} (C : Precategory l1 l2) where is-preunivalent-prop-Precategory : Prop (l1 ⊔ l2) is-preunivalent-prop-Precategory = Π-Prop ( obj-Precategory C) ( λ x → Π-Prop ( obj-Precategory C) ( λ y → is-emb-Prop (iso-eq-Precategory C x y))) is-preunivalent-Precategory : UU (l1 ⊔ l2) is-preunivalent-Precategory = type-Prop is-preunivalent-prop-Precategory
The type of preunivalent categories
Preunivalent-Category : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2) Preunivalent-Category l1 l2 = Σ (Precategory l1 l2) (is-preunivalent-Precategory) module _ {l1 l2 : Level} (C : Preunivalent-Category l1 l2) where precategory-Preunivalent-Category : Precategory l1 l2 precategory-Preunivalent-Category = pr1 C obj-Preunivalent-Category : UU l1 obj-Preunivalent-Category = obj-Precategory precategory-Preunivalent-Category hom-set-Preunivalent-Category : obj-Preunivalent-Category → obj-Preunivalent-Category → Set l2 hom-set-Preunivalent-Category = hom-set-Precategory precategory-Preunivalent-Category hom-Preunivalent-Category : obj-Preunivalent-Category → obj-Preunivalent-Category → UU l2 hom-Preunivalent-Category = hom-Precategory precategory-Preunivalent-Category is-set-hom-Preunivalent-Category : (x y : obj-Preunivalent-Category) → is-set (hom-Preunivalent-Category x y) is-set-hom-Preunivalent-Category = is-set-hom-Precategory precategory-Preunivalent-Category comp-hom-Preunivalent-Category : {x y z : obj-Preunivalent-Category} → hom-Preunivalent-Category y z → hom-Preunivalent-Category x y → hom-Preunivalent-Category x z comp-hom-Preunivalent-Category = comp-hom-Precategory precategory-Preunivalent-Category associative-comp-hom-Preunivalent-Category : {x y z w : obj-Preunivalent-Category} (h : hom-Preunivalent-Category z w) (g : hom-Preunivalent-Category y z) (f : hom-Preunivalent-Category x y) → comp-hom-Preunivalent-Category (comp-hom-Preunivalent-Category h g) f = comp-hom-Preunivalent-Category h (comp-hom-Preunivalent-Category g f) associative-comp-hom-Preunivalent-Category = associative-comp-hom-Precategory precategory-Preunivalent-Category involutive-eq-associative-comp-hom-Preunivalent-Category : {x y z w : obj-Preunivalent-Category} (h : hom-Preunivalent-Category z w) (g : hom-Preunivalent-Category y z) (f : hom-Preunivalent-Category x y) → comp-hom-Preunivalent-Category (comp-hom-Preunivalent-Category h g) f =ⁱ comp-hom-Preunivalent-Category h (comp-hom-Preunivalent-Category g f) involutive-eq-associative-comp-hom-Preunivalent-Category = involutive-eq-associative-comp-hom-Precategory ( precategory-Preunivalent-Category) associative-composition-operation-Preunivalent-Category : associative-composition-operation-binary-family-Set hom-set-Preunivalent-Category associative-composition-operation-Preunivalent-Category = associative-composition-operation-Precategory ( precategory-Preunivalent-Category) id-hom-Preunivalent-Category : {x : obj-Preunivalent-Category} → hom-Preunivalent-Category x x id-hom-Preunivalent-Category = id-hom-Precategory precategory-Preunivalent-Category left-unit-law-comp-hom-Preunivalent-Category : {x y : obj-Preunivalent-Category} (f : hom-Preunivalent-Category x y) → comp-hom-Preunivalent-Category id-hom-Preunivalent-Category f = f left-unit-law-comp-hom-Preunivalent-Category = left-unit-law-comp-hom-Precategory precategory-Preunivalent-Category right-unit-law-comp-hom-Preunivalent-Category : {x y : obj-Preunivalent-Category} (f : hom-Preunivalent-Category x y) → comp-hom-Preunivalent-Category f id-hom-Preunivalent-Category = f right-unit-law-comp-hom-Preunivalent-Category = right-unit-law-comp-hom-Precategory precategory-Preunivalent-Category is-unital-composition-operation-Preunivalent-Category : is-unital-composition-operation-binary-family-Set hom-set-Preunivalent-Category comp-hom-Preunivalent-Category is-unital-composition-operation-Preunivalent-Category = is-unital-composition-operation-Precategory ( precategory-Preunivalent-Category) is-preunivalent-Preunivalent-Category : is-preunivalent-Precategory precategory-Preunivalent-Category is-preunivalent-Preunivalent-Category = pr2 C emb-iso-eq-Preunivalent-Category : {x y : obj-Preunivalent-Category} → (x = y) ↪ (iso-Precategory precategory-Preunivalent-Category x y) pr1 (emb-iso-eq-Preunivalent-Category {x} {y}) = iso-eq-Precategory precategory-Preunivalent-Category x y pr2 (emb-iso-eq-Preunivalent-Category {x} {y}) = is-preunivalent-Preunivalent-Category x y
The total hom-type of a preunivalent category
total-hom-Preunivalent-Category : {l1 l2 : Level} (C : Preunivalent-Category l1 l2) → UU (l1 ⊔ l2) total-hom-Preunivalent-Category C = total-hom-Precategory (precategory-Preunivalent-Category C) obj-total-hom-Preunivalent-Category : {l1 l2 : Level} (C : Preunivalent-Category l1 l2) → total-hom-Preunivalent-Category C → obj-Preunivalent-Category C × obj-Preunivalent-Category C obj-total-hom-Preunivalent-Category C = obj-total-hom-Precategory (precategory-Preunivalent-Category C)
Equalities induce morphisms
module _ {l1 l2 : Level} (C : Preunivalent-Category l1 l2) where hom-eq-Preunivalent-Category : (x y : obj-Preunivalent-Category C) → x = y → hom-Preunivalent-Category C x y hom-eq-Preunivalent-Category = hom-eq-Precategory (precategory-Preunivalent-Category C) hom-inv-eq-Preunivalent-Category : (x y : obj-Preunivalent-Category C) → x = y → hom-Preunivalent-Category C y x hom-inv-eq-Preunivalent-Category = hom-inv-eq-Precategory (precategory-Preunivalent-Category C)
Pre- and postcomposition by a morphism
precomp-hom-Preunivalent-Category : {l1 l2 : Level} (C : Preunivalent-Category l1 l2) {x y : obj-Preunivalent-Category C} (f : hom-Preunivalent-Category C x y) (z : obj-Preunivalent-Category C) → hom-Preunivalent-Category C y z → hom-Preunivalent-Category C x z precomp-hom-Preunivalent-Category C = precomp-hom-Precategory (precategory-Preunivalent-Category C) postcomp-hom-Preunivalent-Category : {l1 l2 : Level} (C : Preunivalent-Category l1 l2) {x y : obj-Preunivalent-Category C} (f : hom-Preunivalent-Category C x y) (z : obj-Preunivalent-Category C) → hom-Preunivalent-Category C z x → hom-Preunivalent-Category C z y postcomp-hom-Preunivalent-Category C = postcomp-hom-Precategory (precategory-Preunivalent-Category C)
Properties
The objects in a preunivalent category form a 1-type
The type of identities between two objects in a preunivalent category embeds into the type of isomorphisms between them. But this type is a set, and thus the identity type is a set.
module _ {l1 l2 : Level} (C : Preunivalent-Category l1 l2) where is-1-type-obj-Preunivalent-Category : is-1-type (obj-Preunivalent-Category C) is-1-type-obj-Preunivalent-Category x y = is-set-is-emb ( iso-eq-Precategory (precategory-Preunivalent-Category C) x y) ( is-preunivalent-Preunivalent-Category C x y) ( is-set-iso-Precategory (precategory-Preunivalent-Category C)) obj-1-type-Preunivalent-Category : 1-Type l1 pr1 obj-1-type-Preunivalent-Category = obj-Preunivalent-Category C pr2 obj-1-type-Preunivalent-Category = is-1-type-obj-Preunivalent-Category
The total hom-type of a preunivalent category is a 1-type
module _ {l1 l2 : Level} (C : Preunivalent-Category l1 l2) where is-1-type-total-hom-Preunivalent-Category : is-1-type (total-hom-Preunivalent-Category C) is-1-type-total-hom-Preunivalent-Category = is-trunc-total-hom-is-trunc-obj-Precategory ( precategory-Preunivalent-Category C) ( is-1-type-obj-Preunivalent-Category C) total-hom-1-type-Preunivalent-Category : 1-Type (l1 ⊔ l2) total-hom-1-type-Preunivalent-Category = total-hom-truncated-type-is-trunc-obj-Precategory ( precategory-Preunivalent-Category C) ( is-1-type-obj-Preunivalent-Category C)