This is an archived version pinned as of the submission of my master's thesis. An up-to-date version may be found online.
Inhabited finite total orders
module order-theory.inhabited-finite-total-orders where
Imports
open import foundation.inhabited-types open import foundation.propositions open import foundation.universe-levels open import order-theory.finite-posets open import order-theory.finite-total-orders open import order-theory.posets open import order-theory.total-orders open import univalent-combinatorics.finite-types
Definitions
An inhabited finite total order is a finite total order of which the underlying type is inhabited.
module _ {l1 l2 : Level} (P : Total-Order-𝔽 l1 l2) where is-inhabited-Total-Order-𝔽-Prop : Prop l1 is-inhabited-Total-Order-𝔽-Prop = is-inhabited-Prop (type-Total-Order-𝔽 P) is-inhabited-Total-Order-𝔽 : UU (l1 ⊔ l2) is-inhabited-Total-Order-𝔽 = is-finite-Poset (poset-Total-Order-𝔽 P) is-property-is-inhabited-Total-Order-𝔽 : is-prop is-inhabited-Total-Order-𝔽 is-property-is-inhabited-Total-Order-𝔽 = is-prop-is-finite-Poset (poset-Total-Order-𝔽 P) is-finite-type-is-inhabited-Total-Order-𝔽 : is-inhabited-Total-Order-𝔽 → is-finite (type-Total-Order-𝔽 P) is-finite-type-is-inhabited-Total-Order-𝔽 = is-finite-type-is-finite-Poset (poset-Total-Order-𝔽 P) is-inhabited-finite-total-order-Poset-Prop : {l1 l2 : Level} (P : Poset l1 l2) → Prop (l1 ⊔ l2) is-inhabited-finite-total-order-Poset-Prop P = product-Prop ( is-total-Poset-Prop P) ( product-Prop ( is-finite-Poset-Prop P) ( is-inhabited-Prop (type-Poset P)))