This is an archived version pinned as of the submission of my master's thesis. An up-to-date version may be found online.
The precategory of commutative monoids
module group-theory.precategory-of-commutative-monoids where
Imports
open import category-theory.full-large-subprecategories open import category-theory.large-precategories open import category-theory.precategories open import foundation.universe-levels open import group-theory.commutative-monoids open import group-theory.precategory-of-monoids
Idea
The precategory of commutative monoids consists of commutative monoids and homomorphisms of monoids.
Definitions
The precategory of commutative monoids as a full subprecategory of monoids
Commutative-Monoid-Full-Large-Subprecategory : Full-Large-Subprecategory (λ l → l) Monoid-Large-Precategory Commutative-Monoid-Full-Large-Subprecategory = is-commutative-prop-Monoid
The large precategory of commutative monoids
Commutative-Monoid-Large-Precategory : Large-Precategory lsuc (_⊔_) Commutative-Monoid-Large-Precategory = large-precategory-Full-Large-Subprecategory ( Monoid-Large-Precategory) ( Commutative-Monoid-Full-Large-Subprecategory)
The precategory of small commutative monoids
Commutative-Monoid-Precategory : (l : Level) → Precategory (lsuc l) l Commutative-Monoid-Precategory = precategory-Large-Precategory Commutative-Monoid-Large-Precategory