This is an archived version pinned as of the submission of my master's thesis. An up-to-date version may be found online.
The decidable total order of a standard finite type
module elementary-number-theory.decidable-total-order-standard-finite-types where
Imports
open import elementary-number-theory.inequality-standard-finite-types open import elementary-number-theory.natural-numbers open import foundation.dependent-pair-types open import foundation.propositional-truncations open import foundation.universe-levels open import order-theory.decidable-total-orders open import order-theory.total-orders
Idea
The standard finite type of
order k
equipped with its
standard ordering relation
forms a decidable total order.
Definition
is-total-leq-Fin : (k : ℕ) → is-total-Poset (Fin-Poset k) is-total-leq-Fin k n m = unit-trunc-Prop (linear-leq-Fin k n m) Fin-Total-Order : ℕ → Total-Order lzero lzero pr1 (Fin-Total-Order k) = Fin-Poset k pr2 (Fin-Total-Order k) = is-total-leq-Fin k Fin-Decidable-Total-Order : ℕ → Decidable-Total-Order lzero lzero pr1 (Fin-Decidable-Total-Order k) = Fin-Poset k pr1 (pr2 (Fin-Decidable-Total-Order k)) = is-total-leq-Fin k pr2 (pr2 (Fin-Decidable-Total-Order k)) = is-decidable-leq-Fin k