This is an archived version pinned as of the submission of my master's thesis. An up-to-date version may be found online.
Equivalences between precategories
module category-theory.equivalences-of-precategories where
Imports
open import category-theory.functors-precategories open import category-theory.natural-isomorphisms-functors-precategories open import category-theory.precategories open import foundation.cartesian-product-types open import foundation.dependent-pair-types open import foundation.universe-levels
Idea
A functor F : C → D
is an
equivalence of precategories if there is
- a functor
G : D → C
such thatG ∘ F
is naturally isomorphic to the identity functor onC
, - a functor
H : D → C
such thatF ∘ H
is naturally isomorphic to the identity functor onD
.
Definition
The predicate on functors of being an equivalence of precategories
module _ {l1 l2 l3 l4 : Level} (C : Precategory l1 l2) (D : Precategory l3 l4) where is-equiv-functor-Precategory : functor-Precategory C D → UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) is-equiv-functor-Precategory F = Σ ( functor-Precategory D C) ( λ G → ( natural-isomorphism-Precategory C C ( comp-functor-Precategory C D C G F) ( id-functor-Precategory C))) × Σ ( functor-Precategory D C) ( λ H → ( natural-isomorphism-Precategory D D ( comp-functor-Precategory D C D F H) ( id-functor-Precategory D)))
The type of equivalences of precategories
equiv-Precategory : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) equiv-Precategory = Σ (functor-Precategory C D) (is-equiv-functor-Precategory)