This is an archived version pinned as of the submission of my master's thesis. An up-to-date version may be found online.
The universal property of the unit type
module foundation.universal-property-unit-type where
Imports
open import foundation.dependent-pair-types open import foundation.diagonal-maps-of-types open import foundation.unit-type open import foundation.universal-property-contractible-types open import foundation.universal-property-equivalences open import foundation.universe-levels open import foundation-core.constant-maps open import foundation-core.contractible-types open import foundation-core.equivalences open import foundation-core.homotopies open import foundation-core.precomposition-functions
Idea
The universal property of the unit type characterizes maps out of the unit type. Similarly, the dependent universal property of the unit type characterizes dependent functions out of the unit type.
In foundation.contractible-types
we have alread proven related universal
properties of contractible types.
Properties
ev-star : {l : Level} (P : unit → UU l) → ((x : unit) → P x) → P star ev-star P f = f star ev-star' : {l : Level} (Y : UU l) → (unit → Y) → Y ev-star' Y = ev-star (λ t → Y) abstract dependent-universal-property-unit : {l : Level} (P : unit → UU l) → is-equiv (ev-star P) dependent-universal-property-unit = dependent-universal-property-contr-is-contr star is-contr-unit equiv-dependent-universal-property-unit : {l : Level} (P : unit → UU l) → ((x : unit) → P x) ≃ P star pr1 (equiv-dependent-universal-property-unit P) = ev-star P pr2 (equiv-dependent-universal-property-unit P) = dependent-universal-property-unit P abstract universal-property-unit : {l : Level} (Y : UU l) → is-equiv (ev-star' Y) universal-property-unit Y = dependent-universal-property-unit (λ t → Y) equiv-universal-property-unit : {l : Level} (Y : UU l) → (unit → Y) ≃ Y pr1 (equiv-universal-property-unit Y) = ev-star' Y pr2 (equiv-universal-property-unit Y) = universal-property-unit Y inv-equiv-universal-property-unit : {l : Level} (Y : UU l) → Y ≃ (unit → Y) inv-equiv-universal-property-unit Y = inv-equiv (equiv-universal-property-unit Y) abstract is-equiv-point-is-contr : {l1 : Level} {X : UU l1} (x : X) → is-contr X → is-equiv (point x) is-equiv-point-is-contr x is-contr-X = is-equiv-is-contr (point x) is-contr-unit is-contr-X abstract is-equiv-point-universal-property-unit : {l1 : Level} (X : UU l1) (x : X) → ({l2 : Level} (Y : UU l2) → is-equiv (λ (f : X → Y) → f x)) → is-equiv (point x) is-equiv-point-universal-property-unit X x H = is-equiv-is-equiv-precomp ( point x) ( λ Y → is-equiv-right-factor ( ev-star' Y) ( precomp (point x) Y) ( universal-property-unit Y) ( H Y)) abstract universal-property-unit-is-equiv-point : {l1 : Level} {X : UU l1} (x : X) → is-equiv (point x) → ({l2 : Level} (Y : UU l2) → is-equiv (λ (f : X → Y) → f x)) universal-property-unit-is-equiv-point x is-equiv-point Y = is-equiv-comp ( ev-star' Y) ( precomp (point x) Y) ( is-equiv-precomp-is-equiv (point x) is-equiv-point Y) ( universal-property-unit Y) abstract universal-property-unit-is-contr : {l1 : Level} {X : UU l1} (x : X) → is-contr X → ({l2 : Level} (Y : UU l2) → is-equiv (λ (f : X → Y) → f x)) universal-property-unit-is-contr x is-contr-X = universal-property-unit-is-equiv-point x ( is-equiv-point-is-contr x is-contr-X) abstract is-equiv-diagonal-exponential-is-equiv-point : {l1 : Level} {X : UU l1} (x : X) → is-equiv (point x) → ({l2 : Level} (Y : UU l2) → is-equiv (diagonal-exponential Y X)) is-equiv-diagonal-exponential-is-equiv-point x is-equiv-point Y = is-equiv-is-section ( universal-property-unit-is-equiv-point x is-equiv-point Y) ( refl-htpy)