This is an archived version pinned as of the submission of my master's thesis. An up-to-date version may be found online.
Σ-closed reflective subuniverses
module orthogonal-factorization-systems.sigma-closed-reflective-subuniverses where
Imports
open import foundation.dependent-pair-types open import foundation.sigma-closed-subuniverses open import foundation.universe-levels open import orthogonal-factorization-systems.reflective-subuniverses
Idea
A reflective subuniverse is Σ-closed if it is closed under the formation of Σ-types.
Definition
is-closed-under-Σ-reflective-subuniverse : {l lP : Level} → reflective-subuniverse l lP → UU (lsuc l ⊔ lP) is-closed-under-Σ-reflective-subuniverse (P , _) = is-closed-under-Σ-subuniverse P closed-under-Σ-reflective-subuniverse : (l lP : Level) → UU (lsuc l ⊔ lsuc lP) closed-under-Σ-reflective-subuniverse l lP = Σ ( reflective-subuniverse l lP) ( is-closed-under-Σ-reflective-subuniverse)
See also
The equivalent notions of
- Higher modalities
- Uniquely eliminating modalities
- Stable orthogonal factorization systems
- Σ-closed reflective modalities
References
- [RSS20]
- Egbert Rijke, Michael Shulman, and Bas Spitters. Modalities in homotopy type theory. Logical Methods in Computer Science, 01 2020. URL: https://lmcs.episciences.org/6015, arXiv:1706.07526, doi:10.23638/LMCS-16(1:2)2020.