This is an archived version pinned as of the submission of my master's thesis. An up-to-date version may be found online.
The ring of rational numbers
{-# OPTIONS --lossy-unification #-} module elementary-number-theory.ring-of-rational-numbers where
Imports
open import commutative-algebra.commutative-rings open import elementary-number-theory.additive-group-of-rational-numbers open import elementary-number-theory.multiplication-rational-numbers open import elementary-number-theory.multiplicative-monoid-of-rational-numbers open import foundation.coproduct-types open import foundation.dependent-pair-types open import foundation.unital-binary-operations open import foundation.universe-levels open import group-theory.semigroups open import ring-theory.rings
Idea
The additive group of rational numbers equipped with multiplication is a commutative division ring.
Definitions
The compatible multiplicative structure on the abelian group of rational numbers
has-mul-abelian-group-add-ℚ : has-mul-Ab abelian-group-add-ℚ pr1 has-mul-abelian-group-add-ℚ = has-associative-mul-Semigroup semigroup-mul-ℚ pr1 (pr2 has-mul-abelian-group-add-ℚ) = is-unital-mul-ℚ pr1 (pr2 (pr2 has-mul-abelian-group-add-ℚ)) = left-distributive-mul-add-ℚ pr2 (pr2 (pr2 has-mul-abelian-group-add-ℚ)) = right-distributive-mul-add-ℚ
The ring of rational numbers
ring-ℚ : Ring lzero pr1 ring-ℚ = abelian-group-add-ℚ pr2 ring-ℚ = has-mul-abelian-group-add-ℚ
Properties
The ring of rational numbers is commutative
commutative-ring-ℚ : Commutative-Ring lzero pr1 commutative-ring-ℚ = ring-ℚ pr2 commutative-ring-ℚ = commutative-mul-ℚ