This is an archived version pinned as of the submission of my master's thesis. An up-to-date version may be found online.
The precategory of monoids
module group-theory.precategory-of-monoids where
Imports
open import category-theory.large-precategories open import category-theory.large-subprecategories open import category-theory.precategories open import foundation.dependent-pair-types open import foundation.universe-levels open import group-theory.homomorphisms-monoids open import group-theory.monoids open import group-theory.precategory-of-semigroups
Idea
The precategory of monoids¶ consists of monoids and homomorphisms of monoids.
Definitions
The precategory of monoids as a subprecategory of the precategory of semigroups
Monoid-Large-Subprecategory : Large-Subprecategory (λ l → l) (λ l1 l2 → l2) Semigroup-Large-Precategory Monoid-Large-Subprecategory = λ where .subtype-obj-Large-Subprecategory l → is-unital-prop-Semigroup {l} .subtype-hom-Large-Subprecategory G H is-unital-G is-unital-H → preserves-unit-hom-prop-Semigroup (G , is-unital-G) (H , is-unital-H) .contains-id-Large-Subprecategory G is-unital-G → preserves-unit-id-hom-Monoid (G , is-unital-G) .is-closed-under-composition-Large-Subprecategory G H K g f is-unital-G is-unital-H is-unital-K unit-g unit-f → preserves-unit-comp-hom-Monoid ( G , is-unital-G) ( H , is-unital-H) ( K , is-unital-K) ( g , unit-g) ( f , unit-f)
The large precategory of monoids
Monoid-Large-Precategory : Large-Precategory lsuc (_⊔_) Monoid-Large-Precategory = large-precategory-Large-Subprecategory Monoid-Large-Subprecategory
The precategory of small monoids
Monoid-Precategory : (l : Level) → Precategory (lsuc l) l Monoid-Precategory = precategory-Large-Precategory Monoid-Large-Precategory