1. Overview
  2. 1. Home
  3. 2. Community
    ❱
    1. 2.1. Maintainers
    2. 2.2. Contributors
    3. 2.3. Statement of inclusivity
    4. 2.4. Projects using Agda-Unimath
    5. 2.5. Grant acknowledgements
  4. 3. Guides
    ❱
    1. 3.1. Installing the library
    2. 3.2. Design principles
    3. 3.3. Contributing to the library
    4. 3.4. Structuring your file
      ❱
      1. 3.4.1. File template
    5. 3.5. The library coding style
    6. 3.6. Guidelines for mixfix operators
    7. 3.7. Citing sources
    8. 3.8. Citing the library
  5. 4. Library contents
  6. 5. Art
  7. 6. Formalization of results from the literature
    ❱
    1. 6.1. Sequential Colimits in Homotopy Type Theory
  8. The agda-unimath library
  9. 7. Category theory
    ❱
    1. 7.1. Adjunctions between large categories
    2. 7.2. Adjunctions between large precategories
    3. 7.3. Anafunctors between categories
    4. 7.4. Anafunctors between precategories
    5. 7.5. The augmented simplex category
    6. 7.6. Categories
    7. 7.7. The category of functors and natural transformations between two categories
    8. 7.8. The category of functors and natural transformations from small to large categories
    9. 7.9. The category of maps and natural transformations between two categories
    10. 7.10. The category of maps and natural transformations from small to large categories
    11. 7.11. Commuting squares of morphisms in large precategories
    12. 7.12. Commuting squares of morphisms in precategories
    13. 7.13. Commuting squares of morphisms in set-magmoids
    14. 7.14. Composition operations on binary families of sets
    15. 7.15. Conservative functors between precategories
    16. 7.16. Constant functors
    17. 7.17. Copresheaf categories
    18. 7.18. Coproducts in precategories
    19. 7.19. Cores of categories
    20. 7.20. Cores of precategories
    21. 7.21. Dependent products of categories
    22. 7.22. Dependent products of large categories
    23. 7.23. Dependent products of large precategories
    24. 7.24. Dependent products of precategories
    25. 7.25. Discrete categories
    26. 7.26. Embedding maps between precategories
    27. 7.27. Embeddings between precategories
    28. 7.28. Endomorphisms in categories
    29. 7.29. Endomorphisms in precategories
    30. 7.30. Epimorphism in large precategories
    31. 7.31. Equivalences between categories
    32. 7.32. Equivalences between large precategories
    33. 7.33. Equivalences between precategories
    34. 7.34. Essential fibers of functors between precategories
    35. 7.35. Essentially injective functors between precategories
    36. 7.36. Essentially surjective functors between precategories
    37. 7.37. Exponential objects in precategories
    38. 7.38. Faithful functors between precategories
    39. 7.39. Faithful maps between precategories
    40. 7.40. Full functors between precategories
    41. 7.41. Full large subcategories
    42. 7.42. Full large subprecategories
    43. 7.43. Full maps between precategories
    44. 7.44. Full subcategories
    45. 7.45. Full subprecategories
    46. 7.46. Fully faithful functors between precategories
    47. 7.47. Fully faithful maps between precategories
    48. 7.48. Function categories
    49. 7.49. Function precategories
    50. 7.50. Functors between categories
    51. 7.51. Functors from small to large categories
    52. 7.52. Functors from small to large precategories
    53. 7.53. Functors between large categories
    54. 7.54. Functors between large precategories
    55. 7.55. Functors between nonunital precategories
    56. 7.56. Functors between precategories
    57. 7.57. Functors between set-magmoids
    58. 7.58. Gaunt categories
    59. 7.59. Groupoids
    60. 7.60. Homotopies of natural transformations in large precategories
    61. 7.61. Indiscrete precategories
    62. 7.62. The initial category
    63. 7.63. Initial objects of large categories
    64. 7.64. Initial objects of large precategories
    65. 7.65. Initial objects in a precategory
    66. 7.66. Isomorphism induction in categories
    67. 7.67. Isomorphism induction in precategories
    68. 7.68. Isomorphisms in categories
    69. 7.69. Isomorphisms in large categories
    70. 7.70. Isomorphisms in large precategories
    71. 7.71. Isomorphisms in precategories
    72. 7.72. Isomorphisms in subprecategories
    73. 7.73. Large categories
    74. 7.74. Large function categories
    75. 7.75. Large function precategories
    76. 7.76. Large precategories
    77. 7.77. Large subcategories
    78. 7.78. Large subprecategories
    79. 7.79. Maps between categories
    80. 7.80. Maps from small to large categories
    81. 7.81. Maps from small to large precategories
    82. 7.82. Maps between precategories
    83. 7.83. Maps between set-magmoids
    84. 7.84. Monads on categories
    85. 7.85. Monads on precategories
    86. 7.86. Monomorphisms in large precategories
    87. 7.87. Natural isomorphisms between functors between categories
    88. 7.88. Natural isomorphisms between functors between large precategories
    89. 7.89. Natural isomorphisms between functors between precategories
    90. 7.90. Natural isomorphisms between maps between categories
    91. 7.91. Natural isomorphisms between maps between precategories
    92. 7.92. Natural numbers object in a precategory
    93. 7.93. Natural transformations between functors between categories
    94. 7.94. Natural transformations between functors from small to large categories
    95. 7.95. Natural transformations between functors from small to large precategories
    96. 7.96. Natural transformations between functors between large categories
    97. 7.97. Natural transformations between functors between large precategories
    98. 7.98. Natural transformations between functors between precategories
    99. 7.99. Natural transformations between maps between categories
    100. 7.100. Natural transformations between maps from small to large precategories
    101. 7.101. Natural transformations between maps between precategories
    102. 7.102. Nonunital precategories
    103. 7.103. One object precategories
    104. 7.104. Opposite categories
    105. 7.105. Opposite large precategories
    106. 7.106. Opposite precategories
    107. 7.107. Opposite preunivalent categories
    108. 7.108. Pointed endofunctors on categories
    109. 7.109. Pointed endofunctors
    110. 7.110. Precategories
    111. 7.111. Precategory of elements of a presheaf
    112. 7.112. The precategory of functors and natural transformations between two precategories
    113. 7.113. The precategory of functors and natural transformations from small to large precategories
    114. 7.114. The precategory of maps and natural transformations from a small to a large precategory
    115. 7.115. The precategory of maps and natural transformations between two precategories
    116. 7.116. Pregroupoids
    117. 7.117. Presheaf categories
    118. 7.118. Preunivalent categories
    119. 7.119. Products in precategories
    120. 7.120. Products of precategories
    121. 7.121. Pseudomonic functors between precategories
    122. 7.122. Pullbacks in precategories
    123. 7.123. Replete subprecategories
    124. 7.124. Representable functors between categories
    125. 7.125. Representable functors between large precategories
    126. 7.126. Representable functors between precategories
    127. 7.127. The representing arrow category
    128. 7.128. Restrictions of functors to cores of precategories
    129. 7.129. Rigid objects in a category
    130. 7.130. Rigid objects in a precategory
    131. 7.131. Set-magmoids
    132. 7.132. Sieves in categories
    133. 7.133. The simplex category
    134. 7.134. Slice precategories
    135. 7.135. Split essentially surjective functors between precategories
    136. 7.136. Strict categories
    137. 7.137. Structure equivalences between set-magmoids
    138. 7.138. Subcategories
    139. 7.139. Subprecategories
    140. 7.140. Subterminal precategories
    141. 7.141. The terminal category
    142. 7.142. Terminal objects in a precategory
    143. 7.143. Wide subcategories
    144. 7.144. Wide subprecategories
    145. 7.145. The Yoneda lemma for categories
    146. 7.146. The Yoneda lemma for precategories
  10. 8. Commutative algebra
    ❱
    1. 8.1. The binomial theorem in commutative rings
    2. 8.2. The binomial theorem in commutative semirings
    3. 8.3. Boolean rings
    4. 8.4. The category of commutative rings
    5. 8.5. Commutative rings
    6. 8.6. Commutative semirings
    7. 8.7. Dependent products of commutative rings
    8. 8.8. Dependent products of commutative semirings
    9. 8.9. Discrete fields
    10. 8.10. The Eisenstein integers
    11. 8.11. Euclidean domains
    12. 8.12. Full ideals of commutative rings
    13. 8.13. Function commutative rings
    14. 8.14. Function commutative semirings
    15. 8.15. The Gaussian integers
    16. 8.16. The group of multiplicative units of a commutative ring
    17. 8.17. Homomorphisms of commutative rings
    18. 8.18. Homomorphisms of commutative semirings
    19. 8.19. Ideals of commutative rings
    20. 8.20. Ideals of commutative semirings
    21. 8.21. Ideals generated by subsets of commutative rings
    22. 8.22. Integer multiples of elements of commutative rings
    23. 8.23. Integral domains
    24. 8.24. Intersections of ideals of commutative rings
    25. 8.25. Intersections of radical ideals of commutative rings
    26. 8.26. Invertible elements in commutative rings
    27. 8.27. Isomorphisms of commutative rings
    28. 8.28. Joins of ideals of commutative rings
    29. 8.29. Joins of radical ideals of commutative rings
    30. 8.30. Local commutative rings
    31. 8.31. Maximal ideals of commutative rings
    32. 8.32. Multiples of elements in commutative rings
    33. 8.33. Nilradical of a commutative ring
    34. 8.34. The nilradical of a commutative semiring
    35. 8.35. The poset of ideals of a commutative ring
    36. 8.36. The poset of radical ideals of a commutative ring
    37. 8.37. Powers of elements in commutative rings
    38. 8.38. Powers of elements in commutative semirings
    39. 8.39. The precategory of commutative rings
    40. 8.40. The precategory of commutative semirings
    41. 8.41. Prime ideals of commutative rings
    42. 8.42. Products of commutative rings
    43. 8.43. Products of ideals of commutative rings
    44. 8.44. Products of radical ideals of a commutative ring
    45. 8.45. Products of subsets of commutative rings
    46. 8.46. Radical ideals of commutative rings
    47. 8.47. Radical ideals generated by subsets of commutative rings
    48. 8.48. Radicals of ideals of commutative rings
    49. 8.49. Subsets of commutative rings
    50. 8.50. Subsets of commutative semirings
    51. 8.51. Sums in commutative rings
    52. 8.52. Sums in commutative semirings
    53. 8.53. Transporting commutative ring structures along isomorphisms of abelian groups
    54. 8.54. Trivial commutative rings
    55. 8.55. The Zariski locale
    56. 8.56. The Zariski topology on the set of prime ideals of a commutative ring
  11. 9. Elementary number theory
    ❱
    1. 9.1. The absolute value function on the integers
    2. 9.2. The Ackermann function
    3. 9.3. Addition on integer fractions
    4. 9.4. Addition on the integers
    5. 9.5. Addition on the natural numbers
    6. 9.6. Addition of positive, negative, nonnegative and nonpositive integers
    7. 9.7. Addition on the rational numbers
    8. 9.8. The additive group of rational numbers
    9. 9.9. Arithmetic functions
    10. 9.10. The based induction principle of the natural numbers
    11. 9.11. Based strong induction for the natural numbers
    12. 9.12. Bezout's lemma in the integers
    13. 9.13. Bezout's lemma on the natural numbers
    14. 9.14. The binomial coefficients
    15. 9.15. The binomial theorem for the integers
    16. 9.16. The binomial theorem for the natural numbers
    17. 9.17. Bounded sums of arithmetic functions
    18. 9.18. Catalan numbers
    19. 9.19. The cofibonacci sequence
    20. 9.20. The Collatz bijection
    21. 9.21. The Collatz conjecture
    22. 9.22. The commutative semiring of natural numbers
    23. 9.23. The congruence relations on the integers
    24. 9.24. The congruence relations on the natural numbers
    25. 9.25. The cross-multiplication difference of two integer fractions
    26. 9.26. Cubes of natural numbers
    27. 9.27. Decidable dependent function types
    28. 9.28. The decidable total order of integers
    29. 9.29. The decidable total order of natural numbers
    30. 9.30. The decidable total order of rational numbers
    31. 9.31. The decidable total order of a standard finite type
    32. 9.32. Decidable types in elementary number theory
    33. 9.33. The difference between integers
    34. 9.34. The difference between rational numbers
    35. 9.35. Dirichlet convolution
    36. 9.36. The distance between integers
    37. 9.37. The distance between natural numbers
    38. 9.38. Divisibility of integers
    39. 9.39. Divisibility in modular arithmetic
    40. 9.40. Divisibility of natural numbers
    41. 9.41. The divisibility relation on the standard finite types
    42. 9.42. Equality of integers
    43. 9.43. Equality of natural numbers
    44. 9.44. Euclidean division on the natural numbers
    45. 9.45. Euler's totient function
    46. 9.46. Exponentiation of natural numbers
    47. 9.47. Factorials of natural numbers
    48. 9.48. Falling factorials
    49. 9.49. The Fibonacci sequence
    50. 9.50. The field of rational numbers
    51. 9.51. The natural numbers base k
    52. 9.52. Finitely cyclic maps
    53. 9.53. The fundamental theorem of arithmetic
    54. 9.54. The Goldbach conjecture
    55. 9.55. The greatest common divisor of integers
    56. 9.56. The greatest common divisor of natural numbers
    57. 9.57. The group of integers
    58. 9.58. The half-integers
    59. 9.59. The Hardy-Ramanujan number
    60. 9.60. Inequality on integer fractions
    61. 9.61. Inequality on the integers
    62. 9.62. Inequality of natural numbers
    63. 9.63. Inequality on the rational numbers
    64. 9.64. Inequality on the standard finite types
    65. 9.65. The infinitude of primes
    66. 9.66. Initial segments of the natural numbers
    67. 9.67. Integer fractions
    68. 9.68. Integer partitions
    69. 9.69. The integers
    70. 9.70. The Jacobi symbol
    71. 9.71. The Kolakoski sequence
    72. 9.72. The Legendre symbol
    73. 9.73. Lower bounds of type families over the natural numbers
    74. 9.74. Maximum on the natural numbers
    75. 9.75. Maximum on the standard finite types
    76. 9.76. The mediant fraction of two integer fractions
    77. 9.77. Mersenne primes
    78. 9.78. Minimum on the natural numbers
    79. 9.79. Minimum on the standard finite types
    80. 9.80. Modular arithmetic
    81. 9.81. Modular arithmetic on the standard finite types
    82. 9.82. The monoid of natural numbers with addition
    83. 9.83. The monoid of the natural numbers with maximum
    84. 9.84. Multiplication on integer fractions
    85. 9.85. Multiplication of integers
    86. 9.86. Multiplication of the elements of a list of natural numbers
    87. 9.87. Multiplication of natural numbers
    88. 9.88. Multiplication of positive, negative, nonnegative and nonpositive integers
    89. 9.89. Multiplication on the rational numbers
    90. 9.90. The multiplicative group of positive rational numbers
    91. 9.91. The multiplicative group of rational numbers
    92. 9.92. Multiplicative inverses of positive integer fractions
    93. 9.93. The multiplicative monoid of natural numbers
    94. 9.94. The multiplicative monoid of rational numbers
    95. 9.95. Multiplicative units in the integers
    96. 9.96. Multiplicative units in modular arithmetic
    97. 9.97. Multiset coefficients
    98. 9.98. The type of natural numbers
    99. 9.99. The negative integers
    100. 9.100. The nonnegative integers
    101. 9.101. The nonpositive integers
    102. 9.102. Nonzero integers
    103. 9.103. Nonzero natural numbers
    104. 9.104. Nonzero rational numbers
    105. 9.105. The ordinal induction principle for the natural numbers
    106. 9.106. Parity of the natural numbers
    107. 9.107. Peano arithmetic
    108. 9.108. Pisano periods
    109. 9.109. The poset of natural numbers ordered by divisibility
    110. 9.110. The positive, negative, nonnegative and nonpositive integers
    111. 9.111. Positive integer fractions
    112. 9.112. The positive integers
    113. 9.113. Positive rational numbers
    114. 9.114. Powers of integers
    115. 9.115. Powers of two
    116. 9.116. Prime numbers
    117. 9.117. Products of natural numbers
    118. 9.118. Proper divisors of natural numbers
    119. 9.119. Pythagorean triples
    120. 9.120. The rational numbers
    121. 9.121. Reduced integer fractions
    122. 9.122. Relatively prime integers
    123. 9.123. Relatively prime natural numbers
    124. 9.124. Repeating an element in a standard finite type
    125. 9.125. Retracts of the type of natural numbers
    126. 9.126. The ring of integers
    127. 9.127. The ring of rational numbers
    128. 9.128. The sieve of Eratosthenes
    129. 9.129. Square-free natural numbers
    130. 9.130. Squares in the integers
    131. 9.131. Squares in ℤₚ
    132. 9.132. Squares in the natural numbers
    133. 9.133. The standard cyclic groups
    134. 9.134. The standard cyclic rings
    135. 9.135. Stirling numbers of the second kind
    136. 9.136. Strict inequality on the integer fractions
    137. 9.137. Strict inequality on the integers
    138. 9.138. Strict inequality on the natural numbers
    139. 9.139. Strict inequality on the rational numbers
    140. 9.140. Strictly ordered pairs of natural numbers
    141. 9.141. The strong induction principle for the natural numbers
    142. 9.142. Sums of natural numbers
    143. 9.143. Taxicab numbers
    144. 9.144. Telephone numbers
    145. 9.145. The triangular numbers
    146. 9.146. The Twin Prime conjecture
    147. 9.147. Type arithmetic with natural numbers
    148. 9.148. Unit elements in the standard finite types
    149. 9.149. Unit similarity on the standard finite types
    150. 9.150. The universal property of the integers
    151. 9.151. The universal property of the natural numbers
    152. 9.152. Upper bounds for type families over the natural numbers
    153. 9.153. The Well-Ordering Principle of the natural numbers
    154. 9.154. The well-ordering principle of the standard finite types
  12. 10. Finite algebra
    ❱
    1. 10.1. Commutative finite rings
    2. 10.2. Dependent products of commutative finit rings
    3. 10.3. Dependent products of finite rings
    4. 10.4. Finite fields
    5. 10.5. Finite rings
    6. 10.6. Homomorphisms of commutative finite rings
    7. 10.7. Homomorphisms of finite rings
    8. 10.8. Products of commutative finite rings
    9. 10.9. Products of finite rings
    10. 10.10. Semisimple commutative finite rings
  13. 11. Finite group theory
    ❱
    1. 11.1. The abstract quaternion group of order 8
    2. 11.2. Alternating concrete groups
    3. 11.3. Alternating groups
    4. 11.4. Cartier's delooping of the sign homomorphism
    5. 11.5. The concrete quaternion group
    6. 11.6. Deloopings of the sign homomorphism
    7. 11.7. Abelian groups
    8. 11.8. Finite Commutative monoids
    9. 11.9. Finite groups
    10. 11.10. Finite monoids
    11. 11.11. Finite semigroups
    12. 11.12. The group of n-element types
    13. 11.13. Groups of order 2
    14. 11.14. Orbits of permutations
    15. 11.15. Permutations
    16. 11.16. Permutations of standard finite types
    17. 11.17. The sign homomorphism
    18. 11.18. Simpson's delooping of the sign homomorphism
    19. 11.19. Subgroups of finite groups
    20. 11.20. Tetrahedra in 3-dimensional space
    21. 11.21. Transpositions
    22. 11.22. Transpositions of standard finite types
  14. 12. Foundation
    ❱
    1. 12.1. 0-Connected types
    2. 12.2. 0-Images of maps
    3. 12.3. 0-Maps
    4. 12.4. 1-Types
    5. 12.5. 2-Types
    6. 12.6. Action on equivalences of functions
    7. 12.7. The action on equivalences of functions out of subuniverses
    8. 12.8. Action on equivalences of type families
    9. 12.9. Action on equivalences in type families over subuniverses
    10. 12.10. The action of functions on higher identifications
    11. 12.11. The action on homotopies of functions
    12. 12.12. The binary action on identifications of binary functions
    13. 12.13. The action on identifications of dependent functions
    14. 12.14. The action on identifications of functions
    15. 12.15. Apartness relations
    16. 12.16. Arithmetic law for coproduct decomposition and Σ-decomposition
    17. 12.17. Arithmetic law for product decomposition and Π-decomposition
    18. 12.18. Automorphisms
    19. 12.19. The axiom of choice
    20. 12.20. Bands
    21. 12.21. Base changes of span diagrams
    22. 12.22. Binary embeddings
    23. 12.23. Binary equivalences
    24. 12.24. Binary equivalences on unordered pairs of types
    25. 12.25. Binary functoriality of set quotients
    26. 12.26. Homotopies of binary operations
    27. 12.27. Binary operations on unordered pairs of types
    28. 12.28. Binary reflecting maps of equivalence relations
    29. 12.29. Binary relations
    30. 12.30. Binary relations with extensions
    31. 12.31. Binary relations with lifts
    32. 12.32. Binary transport
    33. 12.33. Binary type duality
    34. 12.34. The booleans
    35. 12.35. The Cantor–Schröder–Bernstein–Escardó theorem
    36. 12.36. Cantor's diagonal argument
    37. 12.37. Cartesian morphisms of arrows
    38. 12.38. Cartesian morphisms of span diagrams
    39. 12.39. Cartesian product types
    40. 12.40. Cartesian products of set quotients
    41. 12.41. The category of families of sets
    42. 12.42. The category of sets
    43. 12.43. Choice of representatives for an equivalence relation
    44. 12.44. Codiagonal maps of types
    45. 12.45. Coherently invertible maps
    46. 12.46. Coinhabited pairs of types
    47. 12.47. Commuting cubes of maps
    48. 12.48. Commuting hexagons of identifications
    49. 12.49. Commuting pentagons of identifications
    50. 12.50. Commuting prisms of maps
    51. 12.51. Commuting squares of homotopies
    52. 12.52. Commuting squares of identifications
    53. 12.53. Commuting squares of maps
    54. 12.54. Commuting tetrahedra of homotopies
    55. 12.55. Commuting tetrahedra of maps
    56. 12.56. Commuting triangles of homotopies
    57. 12.57. Commuting triangles of identifications
    58. 12.58. Commuting triangles of maps
    59. 12.59. Commuting triangles of morphisms of arrows
    60. 12.60. Complements of type families
    61. 12.61. Complements of subtypes
    62. 12.62. Composite maps in inverse sequential diagrams
    63. 12.63. Composition algebra
    64. 12.64. Computational identity types
    65. 12.65. Cones over cospan diagrams
    66. 12.66. Cones over inverse sequential diagrams
    67. 12.67. Conjunction
    68. 12.68. Connected components of types
    69. 12.69. Connected components of universes
    70. 12.70. Connected maps
    71. 12.71. Connected types
    72. 12.72. Constant maps
    73. 12.73. Constant span diagrams
    74. 12.74. Constant type families
    75. 12.75. Contractible maps
    76. 12.76. Contractible types
    77. 12.77. Copartial elements
    78. 12.78. Copartial functions
    79. 12.79. Coproduct decompositions
    80. 12.80. Coproduct decompositions in a subuniverse
    81. 12.81. Coproduct types
    82. 12.82. Coproducts of pullbacks
    83. 12.83. Morphisms in the coslice category of types
    84. 12.84. Cospan diagrams
    85. 12.85. Cospans of types
    86. 12.86. Decidability of dependent function types
    87. 12.87. Decidability of dependent pair types
    88. 12.88. Decidable embeddings
    89. 12.89. Decidable equality
    90. 12.90. Decidable equivalence relations
    91. 12.91. Decidable maps
    92. 12.92. Decidable propositions
    93. 12.93. Decidable relations on types
    94. 12.94. Decidable subtypes
    95. 12.95. Decidable types
    96. 12.96. Dependent binary homotopies
    97. 12.97. The dependent binomial theorem for types (distributivity of dependent function types over coproduct types)
    98. 12.98. Dependent epimorphisms
    99. 12.99. Dependent epimorphisms with respect to truncated types
    100. 12.100. Dependent function types
    101. 12.101. Dependent homotopies
    102. 12.102. Dependent identifications
    103. 12.103. Dependent inverse sequential diagrams of types
    104. 12.104. Dependent pair types
    105. 12.105. Dependent products of pullbacks
    106. 12.106. Dependent sequences
    107. 12.107. Dependent sums of pullbacks
    108. 12.108. Dependent telescopes
    109. 12.109. The dependent universal property of equivalences
    110. 12.110. Descent for coproduct types
    111. 12.111. Descent for dependent pair types
    112. 12.112. Descent for the empty type
    113. 12.113. Descent for equivalences
    114. 12.114. Diagonal maps into cartesian products of types
    115. 12.115. Diagonal maps of types
    116. 12.116. Diagonal span diagrams
    117. 12.117. Diagonals of maps
    118. 12.118. Diagonals of morphisms of arrows
    119. 12.119. Discrete relations
    120. 12.120. Discrete relaxed Σ-decompositions
    121. 12.121. Discrete Σ-decompositions
    122. 12.122. Discrete types
    123. 12.123. Disjunction
    124. 12.124. Double arrows
    125. 12.125. Double negation
    126. 12.126. The double negation modality
    127. 12.127. Double powersets
    128. 12.128. Dubuc-Penon compact types
    129. 12.129. Effective maps for equivalence relations
    130. 12.130. Embeddings
    131. 12.131. Empty types
    132. 12.132. Endomorphisms
    133. 12.133. Epimorphisms
    134. 12.134. Epimorphisms with respect to maps into sets
    135. 12.135. Epimorphisms with respect to truncated types
    136. 12.136. Equality of cartesian product types
    137. 12.137. Equality of coproduct types
    138. 12.138. Equality on dependent function types
    139. 12.139. Equality of dependent pair types
    140. 12.140. Equality in the fibers of a map
    141. 12.141. Equivalence classes
    142. 12.142. Equivalence extensionality
    143. 12.143. Equivalence induction
    144. 12.144. Equivalence injective type families
    145. 12.145. Equivalence relations
    146. 12.146. Equivalences
    147. 12.147. Equivalences of arrows
    148. 12.148. Equivalences of cospans
    149. 12.149. Equivalences of double arrows
    150. 12.150. Equivalences of inverse sequential diagrams of types
    151. 12.151. Equivalences on Maybe
    152. 12.152. Equivalences of span diagrams
    153. 12.153. Equivalences of span diagrams on families of types
    154. 12.154. Equivalences of spans
    155. 12.155. Equivalences of spans of families of types
    156. 12.156. Evaluation of functions
    157. 12.157. Exclusive disjunctions
    158. 12.158. Exclusive sums
    159. 12.159. Existential quantification
    160. 12.160. Exponents of set quotients
    161. 12.161. Extensions of types
    162. 12.162. Faithful maps
    163. 12.163. Families of equivalences
    164. 12.164. Families of maps
    165. 12.165. Families of types over telescopes
    166. 12.166. Fiber inclusions
    167. 12.167. Fibered equivalences
    168. 12.168. Fibered involutions
    169. 12.169. Maps fibered over a map
    170. 12.170. Fibers of maps
    171. 12.171. Finitely coherent equivalences
    172. 12.172. Finitely coherently invertible maps
    173. 12.173. Fixed points of endofunctions
    174. 12.174. Full subtypes of types
    175. 12.175. Function extensionality
    176. 12.176. Function types
    177. 12.177. Functional correspondences
    178. 12.178. Functoriality of cartesian product types
    179. 12.179. Functoriality of coproduct types
    180. 12.180. Functoriality of dependent function types
    181. 12.181. Functoriality of dependent pair types
    182. 12.182. Functoriality of fibers of maps
    183. 12.183. Functoriality of function types
    184. 12.184. Functoriality of propositional truncations
    185. 12.185. Functorialty of pullbacks
    186. 12.186. Functoriality of sequential limits
    187. 12.187. Functoriality of set quotients
    188. 12.188. Functoriality of set truncation
    189. 12.189. Functoriality of truncations
    190. 12.190. The fundamental theorem of identity types
    191. 12.191. Global choice
    192. 12.192. Global subuniverses
    193. 12.193. Higher homotopies of morphisms of arrows
    194. 12.194. Hilbert's ε-operators
    195. 12.195. Homotopies
    196. 12.196. Homotopies of morphisms of arrows
    197. 12.197. Homotopy algebra
    198. 12.198. Homotopy induction
    199. 12.199. The homotopy preorder of types
    200. 12.200. Idempotent maps
    201. 12.201. Identity systems
    202. 12.202. Identity types of truncated types
    203. 12.203. Identity types
    204. 12.204. The image of a map
    205. 12.205. Images of subtypes
    206. 12.206. Implicit function types
    207. 12.207. Impredicative encodings of the logical operations
    208. 12.208. Impredicative universes
    209. 12.209. The induction principle for propositional truncation
    210. 12.210. Infinitely coherent equivalences
    211. 12.211. Inhabited subtypes
    212. 12.212. Inhabited types
    213. 12.213. Injective maps
    214. 12.214. The interchange law
    215. 12.215. Intersections of subtypes
    216. 12.216. Inverse sequential diagrams of types
    217. 12.217. Invertible maps
    218. 12.218. Involutions
    219. 12.219. Isolated elements
    220. 12.220. Isomorphisms of sets
    221. 12.221. Iterated cartesian product types
    222. 12.222. Iterated dependent pair types
    223. 12.223. Iterated dependent product types
    224. 12.224. Iterating automorphisms
    225. 12.225. Iterating functions
    226. 12.226. Iterating involutions
    227. 12.227. Kernel span diagrams of maps
    228. 12.228. Large binary relations
    229. 12.229. Large dependent pair types
    230. 12.230. Large homotopies
    231. 12.231. Large identity types
    232. 12.232. The large locale of propositions
    233. 12.233. The large locale of subtypes
    234. 12.234. The law of excluded middle
    235. 12.235. Lawvere's fixed point theorem
    236. 12.236. The lesser limited principle of omniscience
    237. 12.237. Lifts of types
    238. 12.238. The limited principle of omniscience
    239. 12.239. Locally small types
    240. 12.240. Logical equivalences
    241. 12.241. The maybe modality
    242. 12.242. Mere embeddings
    243. 12.243. Mere equality
    244. 12.244. Mere equivalences
    245. 12.245. Mere functions
    246. 12.246. Mere logical equivalences
    247. 12.247. Mere path-cosplit maps
    248. 12.248. Monomorphisms
    249. 12.249. Morphisms of arrows
    250. 12.250. Morphisms of binary relations
    251. 12.251. Morphisms of cospan diagrams
    252. 12.252. Morphisms of cospans
    253. 12.253. Morphisms of double arrows
    254. 12.254. Morphisms of inverse sequential diagrams of types
    255. 12.255. Morphisms of span diagrams
    256. 12.256. Morphisms of spans
    257. 12.257. Morphisms of spans on families of types
    258. 12.258. Morphisms of twisted arrows
    259. 12.259. Multisubsets
    260. 12.260. Multivariable correspondences
    261. 12.261. Multivariable decidable relations
    262. 12.262. Multivariable functoriality of set quotients
    263. 12.263. Multivariable homotopies
    264. 12.264. Multivariable operations
    265. 12.265. Multivariable relations
    266. 12.266. Multivariable sections
    267. 12.267. Negated equality
    268. 12.268. Negation
    269. 12.269. Noncontractible types
    270. 12.270. Operations on span diagrams
    271. 12.271. Operations on spans
    272. 12.272. Operations on spans of families of types
    273. 12.273. Opposite spans
    274. 12.274. Pairs of distinct elements
    275. 12.275. Partial elements
    276. 12.276. Partial functions
    277. 12.277. Partial sequences
    278. 12.278. Partitions
    279. 12.279. Path algebra
    280. 12.280. Path-cosplit maps
    281. 12.281. Path-split maps
    282. 12.282. Perfect images
    283. 12.283. Permutations of spans of families of types
    284. 12.284. Π-decompositions of types
    285. 12.285. Π-decompositions of types into types in a subuniverse
    286. 12.286. Pointed torsorial type families
    287. 12.287. Postcomposition of dependent functions
    288. 12.288. Postcomposition of functions
    289. 12.289. Postcomposition of pullbacks
    290. 12.290. Powersets
    291. 12.291. Precomposition of dependent functions
    292. 12.292. Precomposition of functions
    293. 12.293. Precomposition of functions into subuniverses
    294. 12.294. Precomposition of type families
    295. 12.295. Preimages of subtypes
    296. 12.296. The preunivalence axiom
    297. 12.297. Preunivalent type families
    298. 12.298. The principle of omniscience
    299. 12.299. Product decompositions
    300. 12.300. Product decompositions of types in a subuniverse
    301. 12.301. Products of binary relations
    302. 12.302. Products of equivalence relataions
    303. 12.303. Products of tuples of types
    304. 12.304. Products of pullbacks
    305. 12.305. Products of unordered pairs of types
    306. 12.306. Products of unordered tuples of types
    307. 12.307. Projective types
    308. 12.308. Proper subsets
    309. 12.309. Propositional extensionality
    310. 12.310. Propositional maps
    311. 12.311. Propositional resizing
    312. 12.312. Propositional truncations
    313. 12.313. Propositions
    314. 12.314. Pullbacks
    315. 12.315. Pullbacks of subtypes
    316. 12.316. Quasicoherently idempotent maps
    317. 12.317. Raising universe levels
    318. 12.318. Reflecting maps for equivalence relations
    319. 12.319. Reflexive relations
    320. 12.320. The Regensburg extension of the fundamental theorem of identity types
    321. 12.321. Relaxed Σ-decompositions of types
    322. 12.322. Repetitions of values of maps
    323. 12.323. Repetitions in sequences
    324. 12.324. The type theoretic replacement axiom
    325. 12.325. Retractions
    326. 12.326. Retracts of maps
    327. 12.327. Retracts of types
    328. 12.328. Russell's paradox
    329. 12.329. Sections
    330. 12.330. Separated types
    331. 12.331. Sequences
    332. 12.332. Sequential limits
    333. 12.333. Set presented types
    334. 12.334. Set quotients
    335. 12.335. Set truncations
    336. 12.336. Sets
    337. 12.337. Shifting sequences
    338. 12.338. Σ-closed subuniverses
    339. 12.339. Σ-decompositions of types into types in a subuniverse
    340. 12.340. Σ-decompositions of types
    341. 12.341. Singleton induction
    342. 12.342. Singleton subtypes
    343. 12.343. Morphisms in the slice category of types
    344. 12.344. Small maps
    345. 12.345. Small types
    346. 12.346. Small universes
    347. 12.347. Sorial type families
    348. 12.348. Span diagrams
    349. 12.349. Span diagrams on families of types
    350. 12.350. Spans of types
    351. 12.351. Spans of families of types
    352. 12.352. Split idempotent maps
    353. 12.353. Split surjective maps
    354. 12.354. Standard apartness relations
    355. 12.355. Standard pullbacks
    356. 12.356. Strict symmetrization of binary relations
    357. 12.357. Strictly involutive identity types
    358. 12.358. The strictly right unital concatenation operation on identifications
    359. 12.359. Strongly extensional maps
    360. 12.360. Structure
    361. 12.361. The structure identity principle
    362. 12.362. Structured type duality
    363. 12.363. Subsingleton induction
    364. 12.364. Subterminal types
    365. 12.365. Subtype duality
    366. 12.366. The subtype identity principle
    367. 12.367. Subtypes
    368. 12.368. Subuniverses
    369. 12.369. Surjective maps
    370. 12.370. Symmetric binary relations
    371. 12.371. Symmetric cores of binary relations
    372. 12.372. Symmetric difference of subtypes
    373. 12.373. The symmetric identity types
    374. 12.374. Symmetric operations
    375. 12.375. Telescopes
    376. 12.376. Terminal spans on families of types
    377. 12.377. Tight apartness relations
    378. 12.378. Torsorial type families
    379. 12.379. Total partial elements
    380. 12.380. Total partial functions
    381. 12.381. Transfinite cocomposition of maps
    382. 12.382. Transport along equivalences
    383. 12.383. Transport along higher identifications
    384. 12.384. Transport along homotopies
    385. 12.385. Transport along identifications
    386. 12.386. Transport-split type families
    387. 12.387. Transposing identifications along equivalences
    388. 12.388. Transposing identifications along retractions
    389. 12.389. Transposing identifications along sections
    390. 12.390. Transposition of span diagrams
    391. 12.391. Trivial relaxed Σ-decompositions
    392. 12.392. Trivial Σ-decompositions
    393. 12.393. Truncated equality
    394. 12.394. Truncated maps
    395. 12.395. Truncated types
    396. 12.396. k-Equivalences
    397. 12.397. Truncation images of maps
    398. 12.398. Truncation levels
    399. 12.399. The truncation modalities
    400. 12.400. Truncations
    401. 12.401. Tuples of types
    402. 12.402. Type arithmetic with the booleans
    403. 12.403. Type arithmetic for cartesian product types
    404. 12.404. Type arithmetic for coproduct types
    405. 12.405. Type arithmetic with dependent function types
    406. 12.406. Type arithmetic for dependent pair types
    407. 12.407. Type arithmetic with the empty type
    408. 12.408. Type arithmetic with the unit type
    409. 12.409. Type duality
    410. 12.410. The type theoretic principle of choice
    411. 12.411. Unions of subtypes
    412. 12.412. Uniqueness of the image of a map
    413. 12.413. Uniqueness quantification
    414. 12.414. The uniqueness of set quotients
    415. 12.415. Uniqueness of set truncations
    416. 12.416. Uniqueness of the truncations
    417. 12.417. The unit type
    418. 12.418. Unital binary operations
    419. 12.419. The univalence axiom
    420. 12.420. The univalence axiom implies function extensionality
    421. 12.421. Univalent type families
    422. 12.422. The universal property of booleans
    423. 12.423. The universal properties of cartesian product types
    424. 12.424. Universal property of contractible types
    425. 12.425. The universal property of coproduct types
    426. 12.426. The universal property of dependent function types
    427. 12.427. The universal property of dependent pair types
    428. 12.428. The universal property of the empty type
    429. 12.429. The universal property of equivalences
    430. 12.430. The universal property of the family of fibers of maps
    431. 12.431. The universal property of fiber products
    432. 12.432. The universal property of identity systems
    433. 12.433. The universal property of identity types
    434. 12.434. The universal property of the image of a map
    435. 12.435. The universal property of maybe
    436. 12.436. The universal property of propositional truncations
    437. 12.437. The universal property of propositional truncations with respect to sets
    438. 12.438. The universal property of pullbacks
    439. 12.439. The universal property of sequential limits
    440. 12.440. The universal property of set quotients
    441. 12.441. The universal property of set truncations
    442. 12.442. The universal property of truncations
    443. 12.443. The universal property of the unit type
    444. 12.444. Universal quantification
    445. 12.445. Universe levels
    446. 12.446. Unordered pairs of elements in a type
    447. 12.447. Unordered pairs of types
    448. 12.448. Unordered n-tuples of elements in a type
    449. 12.449. Unordered tuples of types
    450. 12.450. Vectors of set quotients
    451. 12.451. Weak function extensionality
    452. 12.452. The weak limited principle of omniscience
    453. 12.453. Weakly constant maps
    454. 12.454. Whiskering higher homotopies with respect to composition
    455. 12.455. Whiskering homotopies with respect to composition
    456. 12.456. Whiskering homotopies with respect to concatenation
    457. 12.457. Whiskering identifications with respect to concatenation
    458. 12.458. Whiskering operations
    459. 12.459. The wild category of types
    460. 12.460. Yoneda identity types
  15. 13. Foundation core
    ❱
    1. 13.1. 1-Types
    2. 13.2. Cartesian product types
    3. 13.3. Coherently invertible maps
    4. 13.4. Commuting prisms of maps
    5. 13.5. Commuting squares of homotopies
    6. 13.6. Commuting squares of identifications
    7. 13.7. Commuting squares of maps
    8. 13.8. Commuting triangles of maps
    9. 13.9. Constant maps
    10. 13.10. Contractible maps
    11. 13.11. Contractible types
    12. 13.12. Coproduct types
    13. 13.13. Decidable propositions
    14. 13.14. Dependent identifications
    15. 13.15. Diagonal maps into cartesian products of types
    16. 13.16. Discrete types
    17. 13.17. Embeddings
    18. 13.18. Empty types
    19. 13.19. Endomorphisms
    20. 13.20. Equality of dependent pair types
    21. 13.21. Equivalence relations
    22. 13.22. Equivalences
    23. 13.23. Families of equivalences
    24. 13.24. Fibers of maps
    25. 13.25. Function types
    26. 13.26. Functoriality of dependent function types
    27. 13.27. Functoriality of dependent pair types
    28. 13.28. Homotopies
    29. 13.29. Identity types
    30. 13.30. Injective maps
    31. 13.31. Invertible maps
    32. 13.32. Negation
    33. 13.33. Operations on span diagrams
    34. 13.34. Operations on spans
    35. 13.35. Path-split maps
    36. 13.36. Postcomposition of dependent functions
    37. 13.37. Postcomposition of functions
    38. 13.38. Precomposition of dependent functions
    39. 13.39. Precomposition of functions
    40. 13.40. Propositional maps
    41. 13.41. Propositions
    42. 13.42. Pullbacks
    43. 13.43. Retractions
    44. 13.44. Retracts of types
    45. 13.45. Sections
    46. 13.46. Sets
    47. 13.47. Small types
    48. 13.48. Subtypes
    49. 13.49. Torsorial type families
    50. 13.50. Transport along identifications
    51. 13.51. Truncated maps
    52. 13.52. Truncated types
    53. 13.53. Truncation levels
    54. 13.54. The type theoretic principle of choice
    55. 13.55. The univalence axiom
    56. 13.56. The universal property of pullbacks
    57. 13.57. The universal property of truncations
    58. 13.58. Whiskering homotopies with respect to concatenation
    59. 13.59. Whiskering identifications with respect to concatenation
  16. 14. Graph theory
    ❱
    1. 14.1. Acyclic undirected graphs
    2. 14.2. Circuits in undirected graphs
    3. 14.3. Closed walks in undirected graphs
    4. 14.4. Complete bipartite graphs
    5. 14.5. Complete multipartite graphs
    6. 14.6. Complete undirected graphs
    7. 14.7. Connected graphs
    8. 14.8. Cycles in undirected graphs
    9. 14.9. Directed graph structures on standard finite sets
    10. 14.10. Directed graphs
    11. 14.11. Discrete graphs
    12. 14.12. Displayed large reflexive graphs
    13. 14.13. Edge-coloured undirected graphs
    14. 14.14. Embeddings of directed graphs
    15. 14.15. Embeddings of undirected graphs
    16. 14.16. Enriched undirected graphs
    17. 14.17. Equivalences of directed graphs
    18. 14.18. Equivalences of enriched undirected graphs
    19. 14.19. Equivalences of undirected graphs
    20. 14.20. Eulerian circuits in undirected graphs
    21. 14.21. Faithful morphisms of undirected graphs
    22. 14.22. Fibers of directed graphs
    23. 14.23. Finite graphs
    24. 14.24. Geometric realizations of undirected graphs
    25. 14.25. Higher directed graphs
    26. 14.26. Hypergraphs
    27. 14.27. Large higher directed graphs
    28. 14.28. Large reflexive graphs
    29. 14.29. Matchings
    30. 14.30. Mere equivalences of undirected graphs
    31. 14.31. Morphisms of directed graphs
    32. 14.32. Morphisms of undirected graphs
    33. 14.33. Incidence in undirected graphs
    34. 14.34. Orientations of undirected graphs
    35. 14.35. Paths in undirected graphs
    36. 14.36. Polygons
    37. 14.37. Raising universe levels of directed graphs
    38. 14.38. Reflecting maps of undirected graphs
    39. 14.39. Reflexive graphs
    40. 14.40. Regular undirected graph
    41. 14.41. Simple undirected graphs
    42. 14.42. Stereoisomerism for enriched undirected graphs
    43. 14.43. Totally faithful morphisms of undirected graphs
    44. 14.44. Trails in directed graphs
    45. 14.45. Trails in undirected graphs
    46. 14.46. Undirected graph structures on standard finite sets
    47. 14.47. Undirected graphs
    48. 14.48. Vertex covers
    49. 14.49. Voltage graphs
    50. 14.50. Walks in directed graphs
    51. 14.51. Walks in undirected graphs
    52. 14.52. Wide displayed large reflexive graphs
  17. 15. Group theory
    ❱
    1. 15.1. Abelian groups
    2. 15.2. Abelianization of groups
    3. 15.3. Pointwise addition of morphisms of abelian groups
    4. 15.4. Automorphism groups
    5. 15.5. Cartesian products of abelian groups
    6. 15.6. Cartesian products of concrete groups
    7. 15.7. Cartesian products of groups
    8. 15.8. Cartesian products of monoids
    9. 15.9. Cartesian products of semigroups
    10. 15.10. The category of abelian groups
    11. 15.11. The category of concrete groups
    12. 15.12. The category of group actions
    13. 15.13. The category of groups
    14. 15.14. The orbit category of a group
    15. 15.15. The category of semigroups
    16. 15.16. Cayley's theorem
    17. 15.17. The center of a group
    18. 15.18. Center of a monoid
    19. 15.19. Center of a semigroup
    20. 15.20. Central elements of groups
    21. 15.21. Central elements of monoids
    22. 15.22. Central elements of semirings
    23. 15.23. Centralizer subgroups
    24. 15.24. Characteristic subgroups
    25. 15.25. Commutative monoids
    26. 15.26. Commutator subgroups
    27. 15.27. Commutators of elements in groups
    28. 15.28. Commuting elements of groups
    29. 15.29. Commuting elements of monoids
    30. 15.30. Commuting elements of semigroups
    31. 15.31. Commuting squares of group homomorphisms
    32. 15.32. Concrete group actions
    33. 15.33. Concrete groups
    34. 15.34. Concrete monoids
    35. 15.35. Congruence relations on abelian groups
    36. 15.36. Congruence relations on commutative monoids
    37. 15.37. Congruence relations on groups
    38. 15.38. Congruence relations on monoids
    39. 15.39. Congruence relations on semigroups
    40. 15.40. Conjugation in groups
    41. 15.41. Conjugation on concrete groups
    42. 15.42. Contravariant pushforwards of concrete group actions
    43. 15.43. Cores of monoids
    44. 15.44. Cyclic groups
    45. 15.45. Decidable subgroups of groups
    46. 15.46. Dependent products of abelian groups
    47. 15.47. Dependent products of commutative monoids
    48. 15.48. Dependent products of groups
    49. 15.49. Dependent products of monoids
    50. 15.50. Dependent products of semigroups
    51. 15.51. The dihedral group construction
    52. 15.52. The dihedral groups
    53. 15.53. The E₈-lattice
    54. 15.54. Elements of finite order
    55. 15.55. Embeddings of abelian groups
    56. 15.56. Embeddings of groups
    57. 15.57. The endomorphism rings of abelian groups
    58. 15.58. Epimorphisms in groups
    59. 15.59. Equivalences of concrete group actions
    60. 15.60. Equivalences of concrete groups
    61. 15.61. Equivalences of group actions
    62. 15.62. Equivalences between semigroups
    63. 15.63. Exponents of abelian groups
    64. 15.64. Exponents of groups
    65. 15.65. Free concrete group actions
    66. 15.66. Free groups with one generator
    67. 15.67. The full subgroup of a group
    68. 15.68. The full subsemigroup of a semigroup
    69. 15.69. Function groups of abelian groups
    70. 15.70. Function commutative monoids
    71. 15.71. Function groups
    72. 15.72. Function monoids
    73. 15.73. Function semigroups
    74. 15.74. Functoriality of quotient groups
    75. 15.75. Furstenberg groups
    76. 15.76. Generating elements of groups
    77. 15.77. Generating sets of groups
    78. 15.78. Group actions
    79. 15.79. Abstract groups
    80. 15.80. Homomorphisms of abelian groups
    81. 15.81. Homomorphisms of commutative monoids
    82. 15.82. Morphisms of concrete group actions
    83. 15.83. Homomorphisms of concrete groups
    84. 15.84. Homomorphisms of generated subgroups
    85. 15.85. Homomorphisms of group actions
    86. 15.86. Homomorphisms of groups
    87. 15.87. Homomorphisms of groups equipped with normal subgroups
    88. 15.88. Homomorphisms of monoids
    89. 15.89. Homomorphisms of semigroups
    90. 15.90. Images of group homomorphisms
    91. 15.91. Images of semigroup homomorphisms
    92. 15.92. Integer multiples of elements in abelian groups
    93. 15.93. Integer powers of elements of groups
    94. 15.94. Intersections of subgroups of abelian groups
    95. 15.95. Intersections of subgroups of groups
    96. 15.96. Inverse semigroups
    97. 15.97. Invertible elements in monoids
    98. 15.98. Isomorphisms of abelian groups
    99. 15.99. Isomorphisms of concrete groups
    100. 15.100. Isomorphisms of group actions
    101. 15.101. Isomorphisms of groups
    102. 15.102. Isomorphisms of monoids
    103. 15.103. Isomorphisms of semigroups
    104. 15.104. Iterated cartesian products of concrete groups
    105. 15.105. Kernels of homomorphisms between abelian groups
    106. 15.106. Kernels of homomorphisms of concrete groups
    107. 15.107. Kernels of homomorphisms of groups
    108. 15.108. Large semigroups
    109. 15.109. Concrete automorphism groups on sets
    110. 15.110. Mere equivalences of concrete group actions
    111. 15.111. Mere equivalences of group actions
    112. 15.112. Monoid actions
    113. 15.113. Monoids
    114. 15.114. Monomorphisms of concrete groups
    115. 15.115. Monomorphisms in the category of groups
    116. 15.116. Multiples of elements in abelian groups
    117. 15.117. Nontrivial groups
    118. 15.118. Normal closures of subgroups
    119. 15.119. Normal cores of subgroups
    120. 15.120. Normal subgroups
    121. 15.121. Normal subgroups of concrete groups
    122. 15.122. Normal submonoids
    123. 15.123. Normal submonoids of commutative monoids
    124. 15.124. Normalizer subgroups
    125. 15.125. Nullifying group homomorphisms
    126. 15.126. The opposite of a group
    127. 15.127. The opposite of a semigroup
    128. 15.128. The orbit-stabilizer theorem for concrete groups
    129. 15.129. Orbits of concrete group actions
    130. 15.130. Orbits of group actions
    131. 15.131. The order of an element in a group
    132. 15.132. Perfect cores
    133. 15.133. Perfect groups
    134. 15.134. Perfect subgroups
    135. 15.135. Powers of elements in commutative monoids
    136. 15.136. Powers of elements in groups
    137. 15.137. Powers of elements in monoids
    138. 15.138. The precategory of commutative monoids
    139. 15.139. The precategory of concrete groups
    140. 15.140. The precategory of group actions
    141. 15.141. The precategory of groups
    142. 15.142. The precategory of monoids
    143. 15.143. The precategory of orbits of a monoid action
    144. 15.144. The precategory of semigroups
    145. 15.145. Principal group actions
    146. 15.146. Principal torsors of concrete groups
    147. 15.147. Products of elements in a monoid
    148. 15.148. Products of tuples of elements in commutative monoids
    149. 15.149. Pullbacks of subgroups
    150. 15.150. Pullbacks of subsemigroups
    151. 15.151. Quotient groups
    152. 15.152. Quotient groups of concrete groups
    153. 15.153. Quotients of abelian groups
    154. 15.154. Rational commutative monoids
    155. 15.155. Representations of monoids in precategories
    156. 15.156. Saturated congruence relations on commutative monoids
    157. 15.157. Saturated congruence relations on monoids
    158. 15.158. Semigroups
    159. 15.159. Sheargroups
    160. 15.160. Shriek of concrete group homomorphisms
    161. 15.161. Stabilizer groups
    162. 15.162. Stabilizers of concrete group actions
    163. 15.163. Subgroups
    164. 15.164. Subgroups of abelian groups
    165. 15.165. Subgroups of concrete groups
    166. 15.166. Subgroups generated by elements of a group
    167. 15.167. Subgroups generated by families of elements
    168. 15.168. Subgroups generated by subsets of groups
    169. 15.169. Submonoids
    170. 15.170. Submonoids of commutative monoids
    171. 15.171. Subsemigroups
    172. 15.172. Subsets of abelian groups
    173. 15.173. Subsets of commutative monoids
    174. 15.174. Subsets of groups
    175. 15.175. Subsets of monoids
    176. 15.176. Subsets of semigroups
    177. 15.177. The substitution functor of concrete group actions
    178. 15.178. The substitution functor of group actions
    179. 15.179. Surjective group homomorphisms
    180. 15.180. Surjective semigroup homomorphisms
    181. 15.181. Symmetric concrete groups
    182. 15.182. Symmetric groups
    183. 15.183. Torsion elements of groups
    184. 15.184. Torsion-free groups
    185. 15.185. Torsors of abstract groups
    186. 15.186. Transitive concrete group actions
    187. 15.187. Transitive group actions
    188. 15.188. Trivial concrete groups
    189. 15.189. Trivial group homomorphisms
    190. 15.190. Trivial groups
    191. 15.191. Trivial subgroups
    192. 15.192. Unordered tuples of elements in commutative monoids
    193. 15.193. Wild representations of monoids
  18. 16. Higher group theory
    ❱
    1. 16.1. Cartesian products of higher groups
    2. 16.2. Conjugation in higher groups
    3. 16.3. Cyclic higher groups
    4. 16.4. Deloopable groups
    5. 16.5. Deloopable H-spaces
    6. 16.6. Deloopable types
    7. 16.7. Eilenberg-Mac Lane spaces
    8. 16.8. Equivalences of higher groups
    9. 16.9. Fixed points of higher group actions
    10. 16.10. Free higher group actions
    11. 16.11. Higher group actions
    12. 16.12. Higher groups
    13. 16.13. Homomorphisms of higher group actions
    14. 16.14. Homomorphisms of higher groups
    15. 16.15. The higher group of integers
    16. 16.16. Iterated cartesian products of higher groups
    17. 16.17. Iterated deloopings of pointed types
    18. 16.18. Orbits of higher group actions
    19. 16.19. Small ∞-groups
    20. 16.20. Subgroups of higher groups
    21. 16.21. Symmetric higher groups
    22. 16.22. Transitive higher group actions
    23. 16.23. Trivial higher groups
  19. 17. Linear algebra
    ❱
    1. 17.1. Constant matrices
    2. 17.2. Diagonal vectors
    3. 17.3. Diagonal matrices on rings
    4. 17.4. Functoriality of the type of matrices
    5. 17.5. Functoriality of the type of vectors
    6. 17.6. Matrices
    7. 17.7. Matrices on rings
    8. 17.8. Multiplication of matrices
    9. 17.9. Scalar multiplication on matrices
    10. 17.10. Scalar multiplication of vectors
    11. 17.11. Scalar multiplication of vectors on rings
    12. 17.12. Transposition of matrices
    13. 17.13. Vectors
    14. 17.14. Vectors on commutative rings
    15. 17.15. Vectors on commutative semirings
    16. 17.16. Vectors on euclidean domains
    17. 17.17. Vectors on rings
    18. 17.18. Vectors on semirings
  20. 18. Lists
    ❱
    1. 18.1. Arrays
    2. 18.2. Concatenation of lists
    3. 18.3. Flattening of lists
    4. 18.4. Functoriality of the list operation
    5. 18.5. Lists
    6. 18.6. Lists of elements in discrete types
    7. 18.7. Permutations of lists
    8. 18.8. Permutations of vectors
    9. 18.9. Predicates on lists
    10. 18.10. Quicksort for lists
    11. 18.11. Reversing lists
    12. 18.12. Sort by insertion for lists
    13. 18.13. Sort by insertion for vectors
    14. 18.14. Sorted lists
    15. 18.15. Sorted vectors
    16. 18.16. Sorting algorithms for lists
    17. 18.17. Sorting algorithms for vectors
    18. 18.18. The universal property of lists with respect to wild monoids
  21. 19. Modal type theory
    ❱
    1. 19.1. Crisp identity types
    2. 19.2. The crisp law of excluded middle
    3. 19.3. Flat dependent function types
    4. 19.4. Flat dependent pair types
    5. 19.5. Flat discrete types
    6. 19.6. The flat modality
    7. 19.7. The flat-sharp adjunction
    8. 19.8. Sharp codiscrete maps
    9. 19.9. Sharp codiscrete types
    10. 19.10. The sharp modality
  22. 20. Online encyclopedia of integer sequences
    ❱
    1. 20.1. Sequences of the online encyclopedia of integer sequences
  23. 21. Order theory
    ❱
    1. 21.1. Accessible elements with respect to relations
    2. 21.2. Bottom elements in posets
    3. 21.3. Bottom elements in preorders
    4. 21.4. Chains in posets
    5. 21.5. Chains in preorders
    6. 21.6. Closure operators on large locales
    7. 21.7. Closure operators on large posets
    8. 21.8. Commuting squares of Galois connections between large posets
    9. 21.9. Commuting squares of order preserving maps of large posets
    10. 21.10. Coverings in locales
    11. 21.11. Decidable posets
    12. 21.12. Decidable preorders
    13. 21.13. Decidable subposets
    14. 21.14. Decidable subpreorders
    15. 21.15. Decidable total orders
    16. 21.16. Decidable total preorders
    17. 21.17. Dependent products of large frames
    18. 21.18. Dependent products of large locales
    19. 21.19. Dependent products of large meet-semilattices
    20. 21.20. Dependent products of large posets
    21. 21.21. Dependent products large preorders
    22. 21.22. Dependent products of large suplattices
    23. 21.23. Directed complete posets
    24. 21.24. Directed families in posets
    25. 21.25. Distributive lattices
    26. 21.26. Finite coverings in locales
    27. 21.27. Finite posets
    28. 21.28. Finite preorders
    29. 21.29. Finite total orders
    30. 21.30. Finitely graded posets
    31. 21.31. Frames
    32. 21.32. Galois connections
    33. 21.33. Galois connections between large posets
    34. 21.34. Greatest lower bounds in large posets
    35. 21.35. Greatest lower bounds in posets
    36. 21.36. Homomorphisms of frames
    37. 21.37. Homomorphisms of large frames
    38. 21.38. Homomorphisms of large locales
    39. 21.39. Homomorphisms of large meet-semilattices
    40. 21.40. Homomorphisms of large suplattices
    41. 21.41. Homomorphisms of meet-semilattices
    42. 21.42. Homomorphisms of meet sup lattices
    43. 21.43. Homomorphisms of suplattices
    44. 21.44. Ideals in preorders
    45. 21.45. Inhabited finite total orders
    46. 21.46. Interval subposets
    47. 21.47. Join-semilattices
    48. 21.48. Large frames
    49. 21.49. Large locales
    50. 21.50. Large meet-semilattices
    51. 21.51. Large meet-subsemilattices
    52. 21.52. Large posets
    53. 21.53. Large preorders
    54. 21.54. Large quotient locales
    55. 21.55. Large subframes
    56. 21.56. Large subposets
    57. 21.57. Large subpreorders
    58. 21.58. Large subsuplattices
    59. 21.59. Large suplattices
    60. 21.60. Lattices
    61. 21.61. Least upper bounds in large posets
    62. 21.62. Least upper bounds in posets
    63. 21.63. Locales
    64. 21.64. Locally finite posets
    65. 21.65. Lower bounds in large posets
    66. 21.66. Lower bounds in posets
    67. 21.67. Lower sets in large posets
    68. 21.68. Lower types in preorders
    69. 21.69. Maximal chains in posets
    70. 21.70. Maximal chains in preorders
    71. 21.71. Meet-semilattices
    72. 21.72. Meet-suplattices
    73. 21.73. Nuclei on large locales
    74. 21.74. Order preserving maps between large posets
    75. 21.75. Order preserving maps between large preorders
    76. 21.76. Order preserving maps on posets
    77. 21.77. Order preserving maps on preorders
    78. 21.78. Posets
    79. 21.79. Powers of large locales
    80. 21.80. The precategory of decidable total orders
    81. 21.81. The precategory of finite posets
    82. 21.82. The precategory of finite total orders
    83. 21.83. The precategory of inhabited finite total orders
    84. 21.84. The precategory of posets
    85. 21.85. The precategory of total orders
    86. 21.86. Preorders
    87. 21.87. Principal lower sets of large posets
    88. 21.88. Principal upper sets of large posets
    89. 21.89. Reflective Galois connections between large posets
    90. 21.90. Similarity of elements in large posets
    91. 21.91. Similarity of elements in large preorders
    92. 21.92. Similarity of order preserving maps between large posets
    93. 21.93. Similarity of order preserving maps between large preorders
    94. 21.94. Subposets
    95. 21.95. Subpreorders
    96. 21.96. Suplattices
    97. 21.97. Top elements in large posets
    98. 21.98. Top elements in posets
    99. 21.99. Top elements in preorders
    100. 21.100. Total orders
    101. 21.101. Total preorders
    102. 21.102. Upper bounds in large posets
    103. 21.103. Upper bounds in posets
    104. 21.104. Upper sets of large posets
    105. 21.105. Well-founded orders
    106. 21.106. Well-founded relations
  24. 22. Organic Chemistry
    ❱
    1. 22.1. Alcohols
    2. 22.2. Alkanes
    3. 22.3. Alkenes
    4. 22.4. Alkynes
    5. 22.5. Ethane
    6. 22.6. Hydrocarbons
    7. 22.7. Methane
    8. 22.8. Saturated carbons
  25. 23. Orthogonal factorization systems
    ❱
    1. 23.1. Cd-structures
    2. 23.2. Cellular maps
    3. 23.3. The closed modalities
    4. 23.4. Double lifts of families of elements
    5. 23.5. Extensions of double lifts of families of elements
    6. 23.6. Extensions of families of elements
    7. 23.7. Extensions of maps
    8. 23.8. Factorization operations
    9. 23.9. Factorization operations into function classes
    10. 23.10. Factorization operations into global function classes
    11. 23.11. Factorizations of maps
    12. 23.12. Factorizations of maps into function classes
    13. 23.13. Factorizations of maps into global function classes
    14. 23.14. Fiberwise orthogonal maps
    15. 23.15. Function classes
    16. 23.16. Functoriality of higher modalities
    17. 23.17. Functoriality of the pullback-hom
    18. 23.18. Global function classes
    19. 23.19. Higher modalities
    20. 23.20. The identity modality
    21. 23.21. Lifting operations
    22. 23.22. Lifting structures on commuting squares of maps
    23. 23.23. Lifts of families of elements
    24. 23.24. Lifts of maps
    25. 23.25. Local families of types
    26. 23.26. Local maps
    27. 23.27. Local types
    28. 23.28. Localizations at maps
    29. 23.29. Localizations at subuniverses
    30. 23.30. Locally small modal-operators
    31. 23.31. Mere lifting properties
    32. 23.32. Modal induction
    33. 23.33. Modal operators
    34. 23.34. Modal subuniverse induction
    35. 23.35. Null families of types
    36. 23.36. Null maps
    37. 23.37. Null types
    38. 23.38. The open modalities
    39. 23.39. Orthogonal factorization systems
    40. 23.40. Orthogonal maps
    41. 23.41. Precomposition of lifts of families of elements by maps
    42. 23.42. The pullback-hom
    43. 23.43. The raise modalities
    44. 23.44. Reflective modalities
    45. 23.45. Reflective subuniverses
    46. 23.46. Regular cd-structures
    47. 23.47. Separated types
    48. 23.48. Σ-closed modalities
    49. 23.49. Σ-closed reflective modalities
    50. 23.50. Σ-closed reflective subuniverses
    51. 23.51. Stable orthogonal factorization systems
    52. 23.52. Uniquely eliminating modalities
    53. 23.53. Wide function classes
    54. 23.54. Wide global function classes
    55. 23.55. The zero modality
  26. 24. Polytopes
    ❱
    1. 24.1. Abstract polytopes
  27. 25. Primitives
    ❱
    1. 25.1. Characters
    2. 25.2. Floats
    3. 25.3. Machine integers
    4. 25.4. Strings
  28. 26. Real numbers
    ❱
    1. 26.1. Dedekind real numbers
    2. 26.2. Rational real numbers
  29. 27. Reflection
    ❱
    1. 27.1. Abstractions
    2. 27.2. Arguments
    3. 27.3. Boolean reflection
    4. 27.4. Definitions
    5. 27.5. Erasing equality
    6. 27.6. Fixity
    7. 27.7. Group solver
    8. 27.8. Literals
    9. 27.9. Metavariables
    10. 27.10. Names
    11. 27.11. Precategory solver
    12. 27.12. Rewriting
    13. 27.13. Terms
    14. 27.14. The type checking monad
  30. 28. Ring theory
    ❱
    1. 28.1. Additive orders of elements of rings
    2. 28.2. Algebras over rings
    3. 28.3. The binomial theorem for rings
    4. 28.4. The binomial theorem for semirings
    5. 28.5. The category of cyclic rings
    6. 28.6. The category of rings
    7. 28.7. Central elements of rings
    8. 28.8. Central elements of semirings
    9. 28.9. Characteristics of rings
    10. 28.10. Commuting elements of rings
    11. 28.11. Congruence relations on rings
    12. 28.12. Congruence relations on semirings
    13. 28.13. Cyclic rings
    14. 28.14. Dependent products of rings
    15. 28.15. Dependent products of semirings
    16. 28.16. Division rings
    17. 28.17. The free ring with one generator
    18. 28.18. Full ideals of rings
    19. 28.19. Function rings
    20. 28.20. Function semirings
    21. 28.21. Generating elements of rings
    22. 28.22. The group of multiplicative units of a ring
    23. 28.23. Homomorphisms of cyclic rings
    24. 28.24. Homomorphisms of rings
    25. 28.25. Homomorphisms of semirings
    26. 28.26. Ideals generated by subsets of rings
    27. 28.27. Ideals of rings
    28. 28.28. Ideals of semirings
    29. 28.29. Idempotent elements in rings
    30. 28.30. Initial rings
    31. 28.31. Integer multiples of elements of rings
    32. 28.32. Intersections of ideals of rings
    33. 28.33. Intersections of ideals of semirings
    34. 28.34. The invariant basis property of rings
    35. 28.35. Invertible elements in rings
    36. 28.36. Isomorphisms of rings
    37. 28.37. Joins of ideals of rings
    38. 28.38. Joins of left ideals of rings
    39. 28.39. Joins of right ideals of rings
    40. 28.40. Kernels of ring homomorphisms
    41. 28.41. Left ideals generated by subsets of rings
    42. 28.42. Left ideals of rings
    43. 28.43. Local rings
    44. 28.44. Localizations of rings
    45. 28.45. Maximal ideals of rings
    46. 28.46. Modules over rings
    47. 28.47. Multiples of elements in rings
    48. 28.48. Multiplicative orders of elements of rings
    49. 28.49. Nil ideals of rings
    50. 28.50. Nilpotent elements in rings
    51. 28.51. Nilpotent elements in semirings
    52. 28.52. Opposite rings
    53. 28.53. The poset of cyclic rings
    54. 28.54. The poset of ideals of a ring
    55. 28.55. The poset of left ideals of a ring
    56. 28.56. The poset of right ideals of a ring
    57. 28.57. Powers of elements in rings
    58. 28.58. Powers of elements in semirings
    59. 28.59. The precategory of rings
    60. 28.60. The precategory of semirings
    61. 28.61. Products of ideals of rings
    62. 28.62. Products of left ideals of rings
    63. 28.63. Products of right ideals of rings
    64. 28.64. Products of rings
    65. 28.65. Products of subsets of rings
    66. 28.66. Quotient rings
    67. 28.67. Radical ideals of rings
    68. 28.68. Right ideals generated by subsets of rings
    69. 28.69. Right ideals of rings
    70. 28.70. Rings
    71. 28.71. Semirings
    72. 28.72. Subsets of rings
    73. 28.73. Subsets of semirings
    74. 28.74. Sums of elements in rings
    75. 28.75. Sums of elements in semirings
    76. 28.76. Transporting ring structures along isomorphisms of abelian groups
    77. 28.77. Trivial rings
  31. 29. Set theory
    ❱
    1. 29.1. Baire space
    2. 29.2. Cantor space
    3. 29.3. Cardinalities of sets
    4. 29.4. Countable sets
    5. 29.5. Cumulative hierarchy
    6. 29.6. Infinite sets
    7. 29.7. Uncountable sets
  32. 30. Species
    ❱
    1. 30.1. Cartesian exponents of species
    2. 30.2. Cartesian products of species of types
    3. 30.3. Cauchy composition of species of types
    4. 30.4. Cauchy composition of species of types in a subuniverse
    5. 30.5. Cauchy exponentials of species of types
    6. 30.6. Cauchy exponentials of species of types in a subuniverse
    7. 30.7. Cauchy products of species of types
    8. 30.8. Cauchy products of species of types in a subuniverse
    9. 30.9. Cauchy series of species of types
    10. 30.10. Cauchy series of species of types in a subuniverse
    11. 30.11. Composition of Cauchy series of species of types
    12. 30.12. Composition of Cauchy series of species of types in subuniverses
    13. 30.13. Coproducts of species of types
    14. 30.14. Coproducts of species of types in subuniverses
    15. 30.15. Cycle index series of species
    16. 30.16. Derivatives of species
    17. 30.17. Dirichlet exponentials of a species of types
    18. 30.18. Dirichlet exponentials of species of types in a subuniverse
    19. 30.19. Dirichlet products of species of types
    20. 30.20. Dirichlet products of species of types in subuniverses
    21. 30.21. Dirichlet series of species of finite inhabited types
    22. 30.22. Dirichlet series of species of types
    23. 30.23. Dirichlet series of species of types in subuniverses
    24. 30.24. Equivalences of species of types
    25. 30.25. Equivalences of species of types in subuniverses
    26. 30.26. Exponential of Cauchy series of species of types
    27. 30.27. Exponential of Cauchy series of species of types in subuniverses
    28. 30.28. Hasse-Weil species
    29. 30.29. Morphisms of finite species
    30. 30.30. Morphisms of species of types
    31. 30.31. Pointing of species of types
    32. 30.32. The precategory of finite species
    33. 30.33. Products of Cauchy series of species of types
    34. 30.34. Products of Cauchy series of species of types in subuniverses
    35. 30.35. Products of Dirichlet series of species of finite inhabited types
    36. 30.36. Products of Dirichlet series of species of types
    37. 30.37. Products of Dirichlet series of species of types in subuniverses
    38. 30.38. Small Composition of species of finite inhabited types
    39. 30.39. Small Cauchy composition of species types in subuniverses
    40. 30.40. Species of finite inhabited types
    41. 30.41. Species of finite types
    42. 30.42. Species of inhabited types
    43. 30.43. Species of types
    44. 30.44. Species of types in subuniverses
    45. 30.45. The unit of Cauchy composition of types
    46. 30.46. The unit of Cauchy composition of species of types in subuniverses
    47. 30.47. Unlabeled structures of finite species
  33. 31. Structured types
    ❱
    1. 31.1. Cartesian products of types equipped with endomorphisms
    2. 31.2. Central H-spaces
    3. 31.3. Commuting squares of pointed homotopies
    4. 31.4. Commuting squares of pointed maps
    5. 31.5. Commuting triangles of pointed maps
    6. 31.6. Conjugation of pointed types
    7. 31.7. Constant pointed maps
    8. 31.8. Contractible pointed types
    9. 31.9. Cyclic types
    10. 31.10. Dependent products of H-spaces
    11. 31.11. Dependent products of pointed types
    12. 31.12. Dependent products of wild monoids
    13. 31.13. Dependent types equipped with automorphisms
    14. 31.14. Equivalences of H-spaces
    15. 31.15. Equivalences of pointed arrows
    16. 31.16. Equivalences of types equipped with automorphisms
    17. 31.17. Equivalences of types equipped with endomorphisms
    18. 31.18. Faithful pointed maps
    19. 31.19. Fibers of pointed maps
    20. 31.20. Finite multiplication in magmas
    21. 31.21. Function H-spaces
    22. 31.22. Function magmas
    23. 31.23. Function wild monoids
    24. 31.24. Globular types
    25. 31.25. H-spaces
    26. 31.26. The initial pointed type equipped with an automorphism
    27. 31.27. The involutive type of H-space structures on a pointed type
    28. 31.28. Involutive types
    29. 31.29. Iterated cartesian products of types equipped with endomorphisms
    30. 31.30. Iterated cartesian products of pointed types
    31. 31.31. Large globular types
    32. 31.32. Large reflexive globular types
    33. 31.33. Large symmetric globular types
    34. 31.34. Large transitive globular types
    35. 31.35. Magmas
    36. 31.36. Maps between globular types
    37. 31.37. Maps between large globular types
    38. 31.38. Mere equivalences of types equipped with endomorphisms
    39. 31.39. Morphisms of H-spaces
    40. 31.40. Morphisms of magmas
    41. 31.41. Morphisms of pointed arrows
    42. 31.42. Morphisms of twisted pointed arrows
    43. 31.43. Morphisms of types equipped with automorphisms
    44. 31.44. Morphisms of types equipped with endomorphisms
    45. 31.45. Morphisms of wild monoids
    46. 31.46. Noncoherent H-spaces
    47. 31.47. Opposite pointed spans
    48. 31.48. Pointed 2-homotopies
    49. 31.49. Pointed cartesian product types
    50. 31.50. Pointed dependent functions
    51. 31.51. Pointed dependent pair types
    52. 31.52. Pointed equivalences
    53. 31.53. Pointed families of types
    54. 31.54. Pointed homotopies
    55. 31.55. Pointed isomorphisms
    56. 31.56. Pointed maps
    57. 31.57. Pointed retractions of pointed maps
    58. 31.58. Pointed sections of pointed maps
    59. 31.59. Pointed span diagrams
    60. 31.60. Pointed spans
    61. 31.61. Pointed types
    62. 31.62. Pointed types equipped with automorphisms
    63. 31.63. The pointed unit type
    64. 31.64. Universal property of contractible types with respect to pointed types and maps
    65. 31.65. Postcomposition of pointed maps
    66. 31.66. Precomposition of pointed maps
    67. 31.67. Reflexive globular types
    68. 31.68. Sets equipped with automorphisms
    69. 31.69. Small pointed types
    70. 31.70. Symmetric elements of involutive types
    71. 31.71. Symmetric globular types
    72. 31.72. Symmetric H-spaces
    73. 31.73. Transitive globular types
    74. 31.74. Transposition of pointed span diagrams
    75. 31.75. Types equipped with automorphisms
    76. 31.76. Types equipped with endomorphisms
    77. 31.77. Uniform pointed homotopies
    78. 31.78. The universal property of pointed equivalences
    79. 31.79. Unpointed maps between pointed types
    80. 31.80. Whiskering pointed homotopies with respect to concatenation
    81. 31.81. Whiskering of pointed homotopies with respect to composition of pointed maps
    82. 31.82. Wild groups
    83. 31.83. Wild loops
    84. 31.84. Wild monoids
    85. 31.85. Wild quasigroups
    86. 31.86. Wild semigroups
  34. 32. Synthetic homotopy theory
    ❱
    1. 32.1. 0-acyclic maps
    2. 32.2. 0-acyclic types
    3. 32.3. 1-acyclic types
    4. 32.4. Acyclic maps
    5. 32.5. Acyclic types
    6. 32.6. The category of connected set bundles over the circle
    7. 32.7. Cavallo's trick
    8. 32.8. The circle
    9. 32.9. Cocartesian morphisms of arrows
    10. 32.10. Cocones under pointed span diagrams
    11. 32.11. Cocones under sequential diagrams
    12. 32.12. Cocones under spans
    13. 32.13. Codiagonals of maps
    14. 32.14. Coequalizers
    15. 32.15. Cofibers
    16. 32.16. Coforks
    17. 32.17. Correspondence between cocones under sequential diagrams and certain coforks
    18. 32.18. Conjugation of loops
    19. 32.19. Connected set bundles over the circle
    20. 32.20. Dependent cocones under sequential diagrams
    21. 32.21. Dependent cocones under spans
    22. 32.22. Dependent coforks
    23. 32.23. Dependent descent for the circle
    24. 32.24. The dependent pullback property of pushouts
    25. 32.25. Dependent pushout-products
    26. 32.26. Dependent sequential diagrams
    27. 32.27. Dependent suspension structures
    28. 32.28. The dependent universal property of coequalizers
    29. 32.29. The dependent universal property of pushouts
    30. 32.30. The dependent universal property of sequential colimits
    31. 32.31. Dependent universal property of suspensions
    32. 32.32. The descent property of the circle
    33. 32.33. Descent data for constant type families over the circle
    34. 32.34. Descent data for families of dependent pair types over the circle
    35. 32.35. Descent data for families of equivalence types over the circle
    36. 32.36. Descent data for families of function types over the circle
    37. 32.37. Subtypes of descent data for the circle
    38. 32.38. Descent data for type families of equivalence types over pushouts
    39. 32.39. Descent data for type families of function types over pushouts
    40. 32.40. Descent data for type families of identity types over pushouts
    41. 32.41. Descent data for pushouts
    42. 32.42. Descent data for sequential colimits
    43. 32.43. Descent property of pushouts
    44. 32.44. Descent property of sequential colimits
    45. 32.45. Double loop spaces
    46. 32.46. The Eckmann-Hilton argument
    47. 32.47. Equifibered sequential diagrams
    48. 32.48. Equivalences of cocones under sequential diagrams
    49. 32.49. Equivalences of coforks
    50. 32.50. Equivalances of dependent sequential diagrams
    51. 32.51. Equivalences of descent data for pushouts
    52. 32.52. Equivalences of sequential diagrams
    53. 32.53. Families with descent data for pushouts
    54. 32.54. Families with descent data for sequential colimits
    55. 32.55. The flattening lemma for coequalizers
    56. 32.56. The flattening lemma for pushouts
    57. 32.57. The flattening lemma for sequential colimits
    58. 32.58. Free loops
    59. 32.59. Functoriality of the loop space operation
    60. 32.60. Functoriality of sequential colimits
    61. 32.61. Functoriality of suspensions
    62. 32.62. Groups of loops in 1-types
    63. 32.63. Hatcher's acyclic type
    64. 32.64. Identity systems of descent data for pushouts
    65. 32.65. The induction principle of pushouts
    66. 32.66. The infinite complex projective space
    67. 32.67. Infinite cyclic types
    68. 32.68. The interval
    69. 32.69. Iterated loop spaces
    70. 32.70. Iterated suspensions of pointed types
    71. 32.71. Join powers of types
    72. 32.72. Joins of maps
    73. 32.73. Joins of types
    74. 32.74. The loop homotopy on the circle
    75. 32.75. Loop spaces
    76. 32.76. Maps of prespectra
    77. 32.77. Mere spheres
    78. 32.78. Morphisms of cocones under morphisms of sequential diagrams
    79. 32.79. Morphisms of coforks
    80. 32.80. Morphisms of dependent sequential diagrams
    81. 32.81. Morphisms of descent data of the circle
    82. 32.82. Morphisms of descent data for pushouts
    83. 32.83. Morphisms of sequential diagrams
    84. 32.84. The multiplication operation on the circle
    85. 32.85. Null cocones under pointed span diagrams
    86. 32.86. The plus-principle
    87. 32.87. Powers of loops
    88. 32.88. Premanifolds
    89. 32.89. Prespectra
    90. 32.90. The pullback property of pushouts
    91. 32.91. Pushout-products
    92. 32.92. Pushouts
    93. 32.93. Pushouts of pointed types
    94. 32.94. The recursion principle of pushouts
    95. 32.95. Retracts of sequential diagrams
    96. 32.96. Rewriting rules for pushouts
    97. 32.97. Sections of families over the circle
    98. 32.98. Sections of descent data for pushouts
    99. 32.99. Sequential colimits
    100. 32.100. Sequential diagrams
    101. 32.101. Sequentially compact types
    102. 32.102. Shifts of sequential diagrams
    103. 32.103. Smash products of pointed types
    104. 32.104. Spectra
    105. 32.105. The sphere prespectrum
    106. 32.106. Spheres
    107. 32.107. Suspension prespectra
    108. 32.108. Suspension Structures
    109. 32.109. Suspensions of pointed types
    110. 32.110. Suspensions of types
    111. 32.111. Tangent spheres
    112. 32.112. Total cocones of type families over cocones under sequential diagrams
    113. 32.113. Total sequential diagrams of dependent sequential diagrams
    114. 32.114. Triple loop spaces
    115. 32.115. k-acyclic maps
    116. 32.116. k-acyclic types
    117. 32.117. The universal cover of the circle
    118. 32.118. The universal property of the circle
    119. 32.119. The universal property of coequalizers
    120. 32.120. The universal property of pushouts
    121. 32.121. The universal property of sequential colimits
    122. 32.122. Universal property of suspensions
    123. 32.123. Universal Property of suspensions of pointed types
    124. 32.124. Wedges of pointed types
    125. 32.125. The zigzag construction of identity types of pushouts
    126. 32.126. Zigzags between sequential diagrams
  35. 33. Trees
    ❱
    1. 33.1. Algebras for polynomial endofunctors
    2. 33.2. Bases of directed trees
    3. 33.3. Bases of enriched directed trees
    4. 33.4. Binary W-types
    5. 33.5. Bounded multisets
    6. 33.6. The coalgebra of directed trees
    7. 33.7. The coalgebra of enriched directed trees
    8. 33.8. Coalgebras of polynomial endofunctors
    9. 33.9. The combinator of directed trees
    10. 33.10. Combinators of enriched directed trees
    11. 33.11. Directed trees
    12. 33.12. The elementhood relation on coalgebras of polynomial endofunctors
    13. 33.13. The elementhood relation on W-types
    14. 33.14. Empty multisets
    15. 33.15. Enriched directed trees
    16. 33.16. Equivalences of directed trees
    17. 33.17. Equivalences of enriched directed trees
    18. 33.18. Extensional W-types
    19. 33.19. Fibers of directed trees
    20. 33.20. Fibers of enriched directed trees
    21. 33.21. Full binary trees
    22. 33.22. Functoriality of the combinator of directed trees
    23. 33.23. Functoriality of the fiber operation on directed trees
    24. 33.24. Functoriality of W-types
    25. 33.25. Hereditary W-types
    26. 33.26. Indexed W-types
    27. 33.27. Induction principles on W-types
    28. 33.28. Inequality on W-types
    29. 33.29. Lower types of elements in W-types
    30. 33.30. Morphisms of algebras of polynomial endofunctors
    31. 33.31. Morphisms of coalgebras of polynomial endofunctors
    32. 33.32. Morphisms of directed trees
    33. 33.33. Morphisms of enriched directed trees
    34. 33.34. Multiset-indexed dependent products of types
    35. 33.35. Multisets
    36. 33.36. Planar binary trees
    37. 33.37. Plane trees
    38. 33.38. Polynomial endofunctors
    39. 33.39. Raising universe levels of directed trees
    40. 33.40. Ranks of elements in W-types
    41. 33.41. Rooted morphisms of directed trees
    42. 33.42. Rooted morphisms of enriched directed trees
    43. 33.43. Rooted quasitrees
    44. 33.44. Rooted undirected trees
    45. 33.45. Small multisets
    46. 33.46. Submultisets
    47. 33.47. Transitive multisets
    48. 33.48. The underlying trees of elements of coalgebras of polynomial endofunctors
    49. 33.49. The underlying trees of elements of W-types
    50. 33.50. Undirected trees
    51. 33.51. The universal multiset
    52. 33.52. The universal tree
    53. 33.53. The W-type of natural numbers
    54. 33.54. The W-type of the type of propositions
    55. 33.55. W-types
  36. 34. Type theories
    ❱
    1. 34.1. Comprehension of fibered type theories
    2. 34.2. Dependent type theories
    3. 34.3. Fibered dependent type theories
    4. 34.4. Π-types in precategories with attributes
    5. 34.5. Π-types in precategories with families
    6. 34.6. Precategories with attributes
    7. 34.7. Precategories with families
    8. 34.8. Sections of dependent type theories
    9. 34.9. Simple type theories
    10. 34.10. Unityped type theories
  37. 35. Univalent combinatorics
    ❱
    1. 35.1. 2-element decidable subtypes
    2. 35.2. 2-element subtypes
    3. 35.3. 2-element types
    4. 35.4. The binomial types
    5. 35.5. Bracelets
    6. 35.6. Cartesian products of finite types
    7. 35.7. The classical definition of the standard finite types
    8. 35.8. Complements of isolated elements of finite types
    9. 35.9. Coproducts of finite types
    10. 35.10. Counting in type theory
    11. 35.11. Counting the elements of decidable subtypes
    12. 35.12. Counting the elements of dependent pair types
    13. 35.13. Counting the elements of the fiber of a map
    14. 35.14. Counting the elements in Maybe
    15. 35.15. Cubes
    16. 35.16. Cycle partitions of finite types
    17. 35.17. Cycle prime decompositions of natural numbers
    18. 35.18. Cyclic finite types
    19. 35.19. Decidable dependent function types
    20. 35.20. Decidability of dependent pair types
    21. 35.21. Decidable equivalence relations on finite types
    22. 35.22. Decidable propositions
    23. 35.23. Decidable subtypes of finite types
    24. 35.24. Dedekind finite sets
    25. 35.25. Counting the elements of dependent function types
    26. 35.26. Dependent pair types of finite types
    27. 35.27. Finite discrete Σ-decompositions
    28. 35.28. Distributivity of set truncation over finite products
    29. 35.29. Double counting
    30. 35.30. Injective maps
    31. 35.31. Embeddings between standard finite types
    32. 35.32. Equality in finite types
    33. 35.33. Equality in the standard finite types
    34. 35.34. Equivalences between finite types
    35. 35.35. Equivalences of cubes
    36. 35.36. Equivalences between standard finite types
    37. 35.37. Ferrers diagrams (unlabeled partitions)
    38. 35.38. Fibers of maps between finite types
    39. 35.39. Finite choice
    40. 35.40. Finiteness of the type of connected components
    41. 35.41. Finite presentations of types
    42. 35.42. Finite types
    43. 35.43. Finitely presented types
    44. 35.44. Finite function types
    45. 35.45. The image of a map
    46. 35.46. Inequality on types equipped with a counting
    47. 35.47. Inhabited finite types
    48. 35.48. Injective maps between finite types
    49. 35.49. An involution on the standard finite types
    50. 35.50. Isotopies of Latin squares
    51. 35.51. Kuratowsky finite sets
    52. 35.52. Latin squares
    53. 35.53. The groupoid of main classes of Latin hypercubes
    54. 35.54. The groupoid of main classes of Latin squares
    55. 35.55. The maybe modality on finite types
    56. 35.56. Necklaces
    57. 35.57. Orientations of the complete undirected graph
    58. 35.58. Orientations of cubes
    59. 35.59. Partitions of finite types
    60. 35.60. Petri-nets
    61. 35.61. π-finite types
    62. 35.62. The pigeonhole principle
    63. 35.63. Finitely π-presented types
    64. 35.64. Quotients of finite types
    65. 35.65. Ramsey theory
    66. 35.66. Repetitions of values
    67. 35.67. Repetitions of values in sequences
    68. 35.68. Retracts of finite types
    69. 35.69. Sequences of elements in finite types
    70. 35.70. Set quotients of index 2
    71. 35.71. Finite Σ-decompositions of finite types
    72. 35.72. Skipping elements in standard finite types
    73. 35.73. Small types
    74. 35.74. Standard finite pruned trees
    75. 35.75. Standard finite trees
    76. 35.76. The standard finite types
    77. 35.77. Steiner systems
    78. 35.78. Steiner triple systems
    79. 35.79. Combinatorial identities of sums of natural numbers
    80. 35.80. Surjective maps between finite types
    81. 35.81. Symmetric difference of finite subtypes
    82. 35.82. Finite trivial Σ-decompositions
    83. 35.83. Type duality of finite types
    84. 35.84. Unions of finite subtypes
    85. 35.85. The universal property of the standard finite types
    86. 35.86. Unlabeled partitions
    87. 35.87. Unlabeled rooted trees
    88. 35.88. Unlabeled trees
  38. 36. Universal algebra
    ❱
    1. 36.1. Abstract equations over signatures
    2. 36.2. Algebraic theories
    3. 36.3. Algebraic theory of groups
    4. 36.4. Algebras
    5. 36.5. Congruences
    6. 36.6. Homomorphisms of algebras
    7. 36.7. Kernels of homomorphisms of algebras
    8. 36.8. Models of signatures
    9. 36.9. Quotient algebras
    10. 36.10. Signatures
    11. 36.11. Terms over signatures
  39. 37. Wild category theory
    ❱
    1. 37.1. Colax functors between large noncoherent wild higher precategories
    2. 37.2. Colax functors between noncoherent wild higher precategories
    3. 37.3. Isomorphisms in noncoherent large wild higher precategories
    4. 37.4. Isomorphisms in noncoherent wild higher precategories
    5. 37.5. Maps between noncoherent large wild higher precategories
    6. 37.6. Maps between noncoherent wild higher precategories
    7. 37.7. Noncoherent large wild higher precategories
    8. 37.8. Noncoherent wild higher precategories

agda-unimath

This is an archived version pinned as of the submission of my master's thesis. An up-to-date version may be found online.

Mere spheres

module synthetic-homotopy-theory.mere-spheres where
Imports
open import elementary-number-theory.natural-numbers

open import foundation.dependent-pair-types
open import foundation.mere-equivalences
open import foundation.propositions
open import foundation.universe-levels

open import synthetic-homotopy-theory.spheres

Idea

A mere n-sphere is a type X that is merely equivalent to the n-sphere.

Definitions

The predicate of being a mere n-sphere

module _
  {l : Level} (n : ℕ) (X : UU l)
  where

  is-mere-sphere-Prop : Prop l
  is-mere-sphere-Prop = mere-equiv-Prop (sphere n) X

  is-mere-sphere : UU l
  is-mere-sphere = type-Prop is-mere-sphere-Prop

  is-prop-is-mere-sphere : is-prop is-mere-sphere
  is-prop-is-mere-sphere = is-prop-type-Prop is-mere-sphere-Prop

Mere spheres

mere-sphere : (l : Level) (n : ℕ) → UU (lsuc l)
mere-sphere l n = Σ (UU l) (is-mere-sphere n)

module _
  {l : Level} (n : ℕ) (X : mere-sphere l n)
  where

  type-mere-sphere : UU l
  type-mere-sphere = pr1 X

  mere-equiv-mere-sphere : mere-equiv (sphere n) type-mere-sphere
  mere-equiv-mere-sphere = pr2 X