This is an archived version pinned as of the submission of my master's thesis. An up-to-date version may be found online.
Reflective modalities
module orthogonal-factorization-systems.reflective-modalities where
Imports
open import foundation.dependent-pair-types open import foundation.universe-levels open import orthogonal-factorization-systems.modal-operators open import orthogonal-factorization-systems.reflective-subuniverses
Idea
A modal operator with unit is reflective if its subuniverse of modal types is reflective.
Definitions
Reflective subuniverses
is-reflective-modality : {l : Level} {○ : operator-modality l l} → unit-modality ○ → UU (lsuc l) is-reflective-modality unit-○ = is-reflective-subuniverse (modal-type-subuniverse unit-○) reflective-modality : (l : Level) → UU (lsuc l) reflective-modality l = Σ (operator-modality l l) (λ ○ → Σ (unit-modality ○) (is-reflective-modality))