This is an archived version pinned as of the submission of my master's thesis. An up-to-date version may be found online.
The multiplicative monoid of rational numbers
{-# OPTIONS --lossy-unification #-} module elementary-number-theory.multiplicative-monoid-of-rational-numbers where
Imports
open import elementary-number-theory.multiplication-rational-numbers open import elementary-number-theory.rational-numbers open import foundation.dependent-pair-types open import foundation.unital-binary-operations open import foundation.universe-levels open import group-theory.commutative-monoids open import group-theory.monoids open import group-theory.semigroups
Idea
The type of rational numbers
equipped with
multiplication is a
commutative monoid with unit one-ℚ
.
Definitions
The multiplicative monoid of rational numbers
semigroup-mul-ℚ : Semigroup lzero pr1 semigroup-mul-ℚ = ℚ-Set pr1 (pr2 semigroup-mul-ℚ) = mul-ℚ pr2 (pr2 semigroup-mul-ℚ) = associative-mul-ℚ is-unital-mul-ℚ : is-unital mul-ℚ pr1 is-unital-mul-ℚ = one-ℚ pr1 (pr2 is-unital-mul-ℚ) = left-unit-law-mul-ℚ pr2 (pr2 is-unital-mul-ℚ) = right-unit-law-mul-ℚ monoid-mul-ℚ : Monoid lzero pr1 monoid-mul-ℚ = semigroup-mul-ℚ pr2 monoid-mul-ℚ = is-unital-mul-ℚ
Properties
The multiplicative monoid of rational numbers is commutative
commutative-monoid-mul-ℚ : Commutative-Monoid lzero pr1 commutative-monoid-mul-ℚ = monoid-mul-ℚ pr2 commutative-monoid-mul-ℚ = commutative-mul-ℚ