This is an archived version pinned as of the submission of my master's thesis. An up-to-date version may be found online.
Action on equivalences of functions
module foundation.action-on-equivalences-functions where
Imports
open import foundation.action-on-higher-identifications-functions open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.equivalence-induction open import foundation.univalence open import foundation.universe-levels open import foundation-core.constant-maps open import foundation-core.contractible-types open import foundation-core.equivalences open import foundation-core.identity-types
Idea
Given a map between universes f : 𝒰 → 𝒱
, then applying the
action on identifications
to identifications arising from the
univalence axiom gives us the
action on equivalences¶
action-equiv-function f : X ≃ Y → f X ≃ f Y.
Alternatively, one can apply transport along identifications to get transport along equivalences. However, by univalence such an action must also be unique, hence these two constructions coincide.
Definition
module _ {l1 l2 : Level} {B : UU l2} (f : UU l1 → B) where abstract unique-action-equiv-function : (X : UU l1) → is-contr ( Σ ((Y : UU l1) → X ≃ Y → f X = f Y) (λ h → h X id-equiv = refl)) unique-action-equiv-function X = is-contr-map-ev-id-equiv (λ Y e → f X = f Y) refl action-equiv-function : {X Y : UU l1} → X ≃ Y → f X = f Y action-equiv-function e = ap f (eq-equiv e) compute-action-equiv-function-id-equiv : (X : UU l1) → action-equiv-function id-equiv = refl compute-action-equiv-function-id-equiv X = ap² f (compute-eq-equiv-id-equiv X)
Properties
The action on equivalences of a constant map is constant
compute-action-equiv-function-const : {l1 l2 : Level} {B : UU l2} (b : B) {X Y : UU l1} (e : X ≃ Y) → (action-equiv-function (const (UU l1) b) e) = refl compute-action-equiv-function-const b e = ap-const b (eq-equiv e)
The action on equivalences of any map preserves composition of equivalences
distributive-action-equiv-function-comp-equiv : {l1 l2 : Level} {B : UU l2} (f : UU l1 → B) {X Y Z : UU l1} → (e : X ≃ Y) (e' : Y ≃ Z) → action-equiv-function f (e' ∘e e) = action-equiv-function f e ∙ action-equiv-function f e' distributive-action-equiv-function-comp-equiv f e e' = ( ap² f (inv (compute-eq-equiv-comp-equiv e e'))) ∙ ( ap-concat f (eq-equiv e) (eq-equiv e'))
The action on equivalences of any map preserves inverses
compute-action-equiv-function-inv-equiv : {l1 l2 : Level} {B : UU l2} (f : UU l1 → B) {X Y : UU l1} (e : X ≃ Y) → action-equiv-function f (inv-equiv e) = inv (action-equiv-function f e) compute-action-equiv-function-inv-equiv f e = ( ap² f (inv (commutativity-inv-eq-equiv e))) ∙ ( ap-inv f (eq-equiv e))