This is an archived version pinned as of the submission of my master's thesis. An up-to-date version may be found online.
Constant span diagrams
module foundation.constant-span-diagrams where
Imports
open import foundation.cartesian-product-types open import foundation.dependent-pair-types open import foundation.span-diagrams open import foundation.spans open import foundation.universe-levels open import foundation-core.equivalences
Idea
The constant span diagram¶ at a type
X
is the span diagram
id id
X <----- X -----> X.
Alternatively, a span diagram
f g
A <----- S -----> B
is said to be constant if both f
and g
are
equivalences.
Definitions
Constant span diagrams at a type
module _ {l1 : Level} where constant-span-diagram : UU l1 → span-diagram l1 l1 l1 pr1 (constant-span-diagram X) = X pr1 (pr2 (constant-span-diagram X)) = X pr2 (pr2 (constant-span-diagram X)) = id-span
The predicate of being a constant span diagram
module _ {l1 l2 l3 : Level} (𝒮 : span-diagram l1 l2 l3) where is-constant-span-diagram : UU (l1 ⊔ l2 ⊔ l3) is-constant-span-diagram = is-equiv (left-map-span-diagram 𝒮) × is-equiv (right-map-span-diagram 𝒮)