This is an archived version pinned as of the submission of my master's thesis. An up-to-date version may be found online.
Powersets
module foundation.powersets where
Imports
open import foundation.subtypes open import foundation.universe-levels open import foundation-core.sets open import order-theory.large-posets open import order-theory.large-preorders open import order-theory.posets open import order-theory.preorders
Idea
The powerset of a type is the set of all subtypes with respect to a given universe level.
Definition
powerset : {l1 : Level} (l2 : Level) → UU l1 → UU (l1 ⊔ lsuc l2) powerset = subtype
Properties
The powerset is a set
module _ {l1 : Level} (A : UU l1) where is-set-powerset : {l2 : Level} → is-set (powerset l2 A) is-set-powerset = is-set-subtype powerset-Set : (l2 : Level) → Set (l1 ⊔ lsuc l2) powerset-Set l2 = subtype-Set l2 A
The powerset large preorder
module _ {l1 : Level} (A : UU l1) where powerset-Large-Preorder : Large-Preorder (λ l → l1 ⊔ lsuc l) (λ l2 l3 → l1 ⊔ l2 ⊔ l3) type-Large-Preorder powerset-Large-Preorder l = subtype l A leq-prop-Large-Preorder powerset-Large-Preorder = leq-prop-subtype refl-leq-Large-Preorder powerset-Large-Preorder = refl-leq-subtype transitive-leq-Large-Preorder powerset-Large-Preorder = transitive-leq-subtype
The powerset large poset
module _ {l1 : Level} (A : UU l1) where powerset-Large-Poset : Large-Poset (λ l → l1 ⊔ lsuc l) (λ l2 l3 → l1 ⊔ l2 ⊔ l3) large-preorder-Large-Poset powerset-Large-Poset = powerset-Large-Preorder A antisymmetric-leq-Large-Poset powerset-Large-Poset P Q = antisymmetric-leq-subtype P Q
The powerset preorder at a universe level
module _ {l1 : Level} (A : UU l1) where powerset-Preorder : (l2 : Level) → Preorder (l1 ⊔ lsuc l2) (l1 ⊔ l2) powerset-Preorder = preorder-Large-Preorder (powerset-Large-Preorder A)
The powerset poset at a universe level
module _ {l1 : Level} (A : UU l1) where powerset-Poset : (l2 : Level) → Poset (l1 ⊔ lsuc l2) (l1 ⊔ l2) powerset-Poset = poset-Large-Poset (powerset-Large-Poset A)