This is an archived version pinned as of the submission of my master's thesis. An up-to-date version may be found online.
Whiskering identifications with respect to concatenation
module foundation.whiskering-identifications-concatenation where open import foundation-core.whiskering-identifications-concatenation public
Imports
open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.universe-levels open import foundation.whiskering-operations open import foundation-core.equivalences open import foundation-core.function-types open import foundation-core.homotopies
Idea
Consider two identifications p q : x = y
in a type A
. The whiskering operations are operations that take
identifications p = q
to identifications r ∙ p = r ∙ q
or to
identifications p ∙ r = q ∙ r
.
The
left whiskering¶
operation takes an identification r : z = x
and an identification p = q
to
an identification r ∙ p = r ∙ q
. Similarly, the
right whiskering¶
operation takes an identification r : y = z
and an identification p = q
to
an identification p ∙ r = q ∙ r
.
The whiskering operations can be defined by the acion on identifications of concatenation. Since concatenation on either side is an equivalence, it follows that the whiskering operations are equivalences.
Properties
Left whiskering of identifications is an equivalence
module _ {l : Level} {A : UU l} {x y z : A} (p : x = y) {q q' : y = z} where is-equiv-left-whisker-concat : is-equiv (left-whisker-concat p {q} {q'}) is-equiv-left-whisker-concat = is-emb-is-equiv (is-equiv-concat p z) q q' equiv-left-whisker-concat : (q = q') ≃ (p ∙ q = p ∙ q') pr1 equiv-left-whisker-concat = left-whisker-concat p pr2 equiv-left-whisker-concat = is-equiv-left-whisker-concat
Right whiskering of identification is an equivalence
module _ {l : Level} {A : UU l} {x y z : A} {p p' : x = y} (q : y = z) where is-equiv-right-whisker-concat : is-equiv (λ (α : p = p') → right-whisker-concat α q) is-equiv-right-whisker-concat = is-emb-is-equiv (is-equiv-concat' x q) p p' equiv-right-whisker-concat : (p = p') ≃ (p ∙ q = p' ∙ q) pr1 equiv-right-whisker-concat α = right-whisker-concat α q pr2 equiv-right-whisker-concat = is-equiv-right-whisker-concat