This is an archived version pinned as of the submission of my master's thesis. An up-to-date version may be found online.
The simplex category
module category-theory.simplex-category where
Imports
open import category-theory.composition-operations-on-binary-families-of-sets open import category-theory.precategories open import elementary-number-theory.inequality-standard-finite-types open import elementary-number-theory.natural-numbers open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.sets open import foundation.strictly-involutive-identity-types open import foundation.universe-levels open import order-theory.order-preserving-maps-posets
Idea
The simplex category is the category consisting of inhabited finite total
orders and
order-preserving maps. However,
we define it as the category whose objects are
natural numbers and whose
hom-sets hom n m
are order-preserving maps between
the standard finite types
Fin (succ-ℕ n)
to Fin (succ-ℕ m)
equipped with
the
standard ordering,
and then show that it is
equivalent to the former.
Definition
The simplex precategory
obj-simplex-Category : UU lzero obj-simplex-Category = ℕ hom-set-simplex-Category : obj-simplex-Category → obj-simplex-Category → Set lzero hom-set-simplex-Category n m = hom-set-Poset (Fin-Poset (succ-ℕ n)) (Fin-Poset (succ-ℕ m)) hom-simplex-Category : obj-simplex-Category → obj-simplex-Category → UU lzero hom-simplex-Category n m = type-Set (hom-set-simplex-Category n m) comp-hom-simplex-Category : {n m r : obj-simplex-Category} → hom-simplex-Category m r → hom-simplex-Category n m → hom-simplex-Category n r comp-hom-simplex-Category {n} {m} {r} = comp-hom-Poset ( Fin-Poset (succ-ℕ n)) ( Fin-Poset (succ-ℕ m)) ( Fin-Poset (succ-ℕ r)) associative-comp-hom-simplex-Category : {n m r s : obj-simplex-Category} (h : hom-simplex-Category r s) (g : hom-simplex-Category m r) (f : hom-simplex-Category n m) → comp-hom-simplex-Category {n} {m} {s} ( comp-hom-simplex-Category {m} {r} {s} h g) ( f) = comp-hom-simplex-Category {n} {r} {s} ( h) ( comp-hom-simplex-Category {n} {m} {r} g f) associative-comp-hom-simplex-Category {n} {m} {r} {s} = associative-comp-hom-Poset ( Fin-Poset (succ-ℕ n)) ( Fin-Poset (succ-ℕ m)) ( Fin-Poset (succ-ℕ r)) ( Fin-Poset (succ-ℕ s)) involutive-eq-associative-comp-hom-simplex-Category : {n m r s : obj-simplex-Category} (h : hom-simplex-Category r s) (g : hom-simplex-Category m r) (f : hom-simplex-Category n m) → comp-hom-simplex-Category {n} {m} {s} ( comp-hom-simplex-Category {m} {r} {s} h g) ( f) =ⁱ comp-hom-simplex-Category {n} {r} {s} ( h) ( comp-hom-simplex-Category {n} {m} {r} g f) involutive-eq-associative-comp-hom-simplex-Category {n} {m} {r} {s} = involutive-eq-associative-comp-hom-Poset ( Fin-Poset (succ-ℕ n)) ( Fin-Poset (succ-ℕ m)) ( Fin-Poset (succ-ℕ r)) ( Fin-Poset (succ-ℕ s)) associative-composition-operation-simplex-Category : associative-composition-operation-binary-family-Set hom-set-simplex-Category pr1 associative-composition-operation-simplex-Category {n} {m} {r} = comp-hom-simplex-Category {n} {m} {r} pr2 associative-composition-operation-simplex-Category {n} {m} {r} {s} = involutive-eq-associative-comp-hom-simplex-Category {n} {m} {r} {s} id-hom-simplex-Category : (n : obj-simplex-Category) → hom-simplex-Category n n id-hom-simplex-Category n = id-hom-Poset (Fin-Poset (succ-ℕ n)) left-unit-law-comp-hom-simplex-Category : {n m : obj-simplex-Category} (f : hom-simplex-Category n m) → comp-hom-simplex-Category {n} {m} {m} (id-hom-simplex-Category m) f = f left-unit-law-comp-hom-simplex-Category {n} {m} = left-unit-law-comp-hom-Poset (Fin-Poset (succ-ℕ n)) (Fin-Poset (succ-ℕ m)) right-unit-law-comp-hom-simplex-Category : {n m : obj-simplex-Category} (f : hom-simplex-Category n m) → comp-hom-simplex-Category {n} {n} {m} f (id-hom-simplex-Category n) = f right-unit-law-comp-hom-simplex-Category {n} {m} = right-unit-law-comp-hom-Poset (Fin-Poset (succ-ℕ n)) (Fin-Poset (succ-ℕ m)) is-unital-composition-operation-simplex-Category : is-unital-composition-operation-binary-family-Set ( hom-set-simplex-Category) ( comp-hom-simplex-Category) pr1 is-unital-composition-operation-simplex-Category = id-hom-simplex-Category pr1 (pr2 is-unital-composition-operation-simplex-Category) {n} {m} = left-unit-law-comp-hom-simplex-Category {n} {m} pr2 (pr2 is-unital-composition-operation-simplex-Category) {n} {m} = right-unit-law-comp-hom-simplex-Category {n} {m} simplex-Precategory : Precategory lzero lzero pr1 simplex-Precategory = obj-simplex-Category pr1 (pr2 simplex-Precategory) = hom-set-simplex-Category pr1 (pr2 (pr2 simplex-Precategory)) = associative-composition-operation-simplex-Category pr2 (pr2 (pr2 simplex-Precategory)) = is-unital-composition-operation-simplex-Category
The simplex category
It remains to be formalized that the simplex category is univalent.
Properties
The simplex category is equivalent to the category of inhabited finite total orders
This remains to be formalized.
The simplex category has a face map and degeneracy unique factorization system
This remains to be formalized.
The simplex category has a degeneracy and face map unique factorization system
This remains to be formalized.
There is a unique nontrivial involution on the simplex category
This remains to be formalized.