This is an archived version pinned as of the submission of my master's thesis. An up-to-date version may be found online.
The lesser limited principle of omniscience
module foundation.lesser-limited-principle-of-omniscience where
Imports
open import elementary-number-theory.natural-numbers open import elementary-number-theory.parity-natural-numbers open import foundation.disjunction open import foundation.universe-levels open import foundation-core.fibers-of-maps open import foundation-core.propositions open import foundation-core.sets open import univalent-combinatorics.standard-finite-types
Statement
The lesser limited principle of omniscience asserts that for any sequence
f : ℕ → Fin 2
containing at most one 1
, either f n = 0
for all even n
or f n = 0
for all odd n
.
LLPO : UU lzero LLPO = (f : ℕ → Fin 2) → is-prop (fiber f (one-Fin 1)) → type-disjunction-Prop ( Π-Prop ℕ ( λ n → function-Prop (is-even-ℕ n) (Id-Prop (Fin-Set 2) (f n) (zero-Fin 1)))) ( Π-Prop ℕ ( λ n → function-Prop (is-odd-ℕ n) (Id-Prop (Fin-Set 2) (f n) (zero-Fin 1))))