This is an archived version pinned as of the submission of my master's thesis. An up-to-date version may be found online.
The type theoretic replacement axiom
module foundation.replacement where
Imports
open import foundation.images open import foundation.locally-small-types open import foundation.universe-levels open import foundation-core.small-types
Idea
The type theoretic replacement axiom asserts that the
image of a map f : A → B
from a
small type A
into a
locally small type B
is small.
Statement
instance-replacement : (l : Level) {l1 l2 : Level} {A : UU l1} {B : UU l2} → (A → B) → UU (lsuc l ⊔ l1 ⊔ l2) instance-replacement l {A = A} {B} f = is-small l A → is-locally-small l B → is-small l (im f) replacement-axiom-Level : (l l1 l2 : Level) → UU (lsuc l ⊔ lsuc l1 ⊔ lsuc l2) replacement-axiom-Level l l1 l2 = {A : UU l1} {B : UU l2} (f : A → B) → instance-replacement l f replacement-axiom : UUω replacement-axiom = {l l1 l2 : Level} → replacement-axiom-Level l l1 l2
Postulate
postulate replacement : replacement-axiom
replacement' : {l1 l2 : Level} {A : UU l1} {B : UU l2} (f : A → B) → is-locally-small l1 B → is-small l1 (im f) replacement' f = replacement f is-small'
References
- [BBC+23]
- Marc Bezem, Ulrik Buchholtz, Pierre Cagne, Bjørn Ian Dundas, and Daniel R Grayson. Symmetry. 06 2023. URL: https://unimath.github.io/SymmetryBook/book.pdf.
- [Rij17]
- Egbert Rijke. The join construction. 01 2017. arXiv:1701.07538.