This is an archived version pinned as of the submission of my master's thesis. An up-to-date version may be found online.

The standard cyclic groups

module elementary-number-theory.standard-cyclic-groups where
Imports
open import elementary-number-theory.modular-arithmetic
open import elementary-number-theory.natural-numbers

open import foundation.dependent-pair-types
open import foundation.universe-levels

open import group-theory.abelian-groups
open import group-theory.groups
open import group-theory.semigroups

Idea

The standard cyclic groups are the groups of integers modulo k. The standard cyclic groups are abelian groups.

The fact that the standard cyclic groups are cyclic groups is shown in elementary-number-theory.standard-cyclic-rings.

Definitions

The semigroup ℤ/k

ℤ-Mod-Semigroup : (k : )  Semigroup lzero
pr1 (ℤ-Mod-Semigroup k) = ℤ-Mod-Set k
pr1 (pr2 (ℤ-Mod-Semigroup k)) = add-ℤ-Mod k
pr2 (pr2 (ℤ-Mod-Semigroup k)) = associative-add-ℤ-Mod k

The group ℤ/k

ℤ-Mod-Group : (k : )  Group lzero
pr1 (ℤ-Mod-Group k) = ℤ-Mod-Semigroup k
pr1 (pr1 (pr2 (ℤ-Mod-Group k))) = zero-ℤ-Mod k
pr1 (pr2 (pr1 (pr2 (ℤ-Mod-Group k)))) = left-unit-law-add-ℤ-Mod k
pr2 (pr2 (pr1 (pr2 (ℤ-Mod-Group k)))) = right-unit-law-add-ℤ-Mod k
pr1 (pr2 (pr2 (ℤ-Mod-Group k))) = neg-ℤ-Mod k
pr1 (pr2 (pr2 (pr2 (ℤ-Mod-Group k)))) = left-inverse-law-add-ℤ-Mod k
pr2 (pr2 (pr2 (pr2 (ℤ-Mod-Group k)))) = right-inverse-law-add-ℤ-Mod k

The abelian group ℤ/k

ℤ-Mod-Ab : (k : )  Ab lzero
pr1 (ℤ-Mod-Ab k) = ℤ-Mod-Group k
pr2 (ℤ-Mod-Ab k) = commutative-add-ℤ-Mod k

See also