This is an archived version pinned as of the submission of my master's thesis. An up-to-date version may be found online.
The standard cyclic groups
module elementary-number-theory.standard-cyclic-groups where
Imports
open import elementary-number-theory.modular-arithmetic open import elementary-number-theory.natural-numbers open import foundation.dependent-pair-types open import foundation.universe-levels open import group-theory.abelian-groups open import group-theory.groups open import group-theory.semigroups
Idea
The standard cyclic groups are the groups of
integers
modulo k
. The standard
cyclic groups are abelian groups.
The fact that the standard cyclic groups are
cyclic groups is shown in
elementary-number-theory.standard-cyclic-rings
.
Definitions
The semigroup ℤ/k
ℤ-Mod-Semigroup : (k : ℕ) → Semigroup lzero pr1 (ℤ-Mod-Semigroup k) = ℤ-Mod-Set k pr1 (pr2 (ℤ-Mod-Semigroup k)) = add-ℤ-Mod k pr2 (pr2 (ℤ-Mod-Semigroup k)) = associative-add-ℤ-Mod k
The group ℤ/k
ℤ-Mod-Group : (k : ℕ) → Group lzero pr1 (ℤ-Mod-Group k) = ℤ-Mod-Semigroup k pr1 (pr1 (pr2 (ℤ-Mod-Group k))) = zero-ℤ-Mod k pr1 (pr2 (pr1 (pr2 (ℤ-Mod-Group k)))) = left-unit-law-add-ℤ-Mod k pr2 (pr2 (pr1 (pr2 (ℤ-Mod-Group k)))) = right-unit-law-add-ℤ-Mod k pr1 (pr2 (pr2 (ℤ-Mod-Group k))) = neg-ℤ-Mod k pr1 (pr2 (pr2 (pr2 (ℤ-Mod-Group k)))) = left-inverse-law-add-ℤ-Mod k pr2 (pr2 (pr2 (pr2 (ℤ-Mod-Group k)))) = right-inverse-law-add-ℤ-Mod k
The abelian group ℤ/k
ℤ-Mod-Ab : (k : ℕ) → Ab lzero pr1 (ℤ-Mod-Ab k) = ℤ-Mod-Group k pr2 (ℤ-Mod-Ab k) = commutative-add-ℤ-Mod k