This is an archived version pinned as of the submission of my master's thesis. An up-to-date version may be found online.
Σ-closed reflective modalities
module orthogonal-factorization-systems.sigma-closed-reflective-modalities where
Imports
open import foundation.cartesian-product-types open import foundation.dependent-pair-types open import foundation.universe-levels open import orthogonal-factorization-systems.modal-operators open import orthogonal-factorization-systems.reflective-modalities open import orthogonal-factorization-systems.sigma-closed-modalities
Idea
A modality is Σ-closed reflective if it is reflective and Σ-closed.
Definition
is-closed-under-Σ-reflective-modality : {l : Level} {○ : operator-modality l l} → (unit-○ : unit-modality ○) → UU (lsuc l) is-closed-under-Σ-reflective-modality unit-○ = (is-reflective-modality unit-○) × (is-closed-under-Σ-modality unit-○) closed-under-Σ-reflective-modality : (l : Level) → UU (lsuc l) closed-under-Σ-reflective-modality l = Σ ( operator-modality l l) ( λ ○ → Σ ( unit-modality ○) ( is-closed-under-Σ-reflective-modality))
See also
The equivalent notions of