This is an archived version pinned as of the submission of my master's thesis. An up-to-date version may be found online.
The universal property of identity systems
module foundation.universal-property-identity-systems where
Imports
open import foundation.dependent-pair-types open import foundation.identity-systems open import foundation.universal-property-contractible-types open import foundation.universal-property-dependent-pair-types open import foundation.universe-levels open import foundation-core.contractible-types open import foundation-core.equivalences open import foundation-core.identity-types open import foundation-core.torsorial-type-families
Idea
A (unary) identity system on a type A equipped with a point a : A
consists of a type family B over A equipped with a point b : B a that
satisfies an induction principle analogous to the induction principle of the
identity type at a. The
dependent universal property of identity types
also follows for identity systems.
Definition
The universal property of identity systems
dependent-universal-property-identity-system : {l1 l2 : Level} {A : UU l1} (B : A → UU l2) {a : A} (b : B a) → UUω dependent-universal-property-identity-system {A = A} B b = {l3 : Level} (P : (x : A) (y : B x) → UU l3) → is-equiv (ev-refl-identity-system b {P})
Properties
A type family satisfies the dependent universal property of identity systems if and only if it is torsorial
module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} {a : A} (b : B a) where dependent-universal-property-identity-system-is-torsorial : is-torsorial B → dependent-universal-property-identity-system B b dependent-universal-property-identity-system-is-torsorial H P = is-equiv-left-factor ( ev-refl-identity-system b) ( ev-pair) ( dependent-universal-property-contr-is-contr ( a , b) ( H) ( λ u → P (pr1 u) (pr2 u))) ( is-equiv-ev-pair) equiv-dependent-universal-property-identity-system-is-torsorial : is-torsorial B → {l : Level} {C : (x : A) → B x → UU l} → ((x : A) (y : B x) → C x y) ≃ C a b pr1 (equiv-dependent-universal-property-identity-system-is-torsorial H) = ev-refl-identity-system b pr2 (equiv-dependent-universal-property-identity-system-is-torsorial H) = dependent-universal-property-identity-system-is-torsorial H _ is-torsorial-dependent-universal-property-identity-system : dependent-universal-property-identity-system B b → is-torsorial B pr1 (is-torsorial-dependent-universal-property-identity-system H) = (a , b) pr2 (is-torsorial-dependent-universal-property-identity-system H) u = map-inv-is-equiv ( H (λ x y → (a , b) = (x , y))) ( refl) ( pr1 u) ( pr2 u)
A type family satisfies the dependent universal property of identity systems if and only if it is an identity system
module _ {l1 l2 : Level} {A : UU l1} {B : A → UU l2} {a : A} (b : B a) where dependent-universal-property-identity-system-is-identity-system : is-identity-system B a b → dependent-universal-property-identity-system B b dependent-universal-property-identity-system-is-identity-system H = dependent-universal-property-identity-system-is-torsorial b ( is-torsorial-is-identity-system a b H) is-identity-system-dependent-universal-property-identity-system : dependent-universal-property-identity-system B b → is-identity-system B a b is-identity-system-dependent-universal-property-identity-system H P = section-is-equiv (H P)