This is an archived version pinned as of the submission of my master's thesis. An up-to-date version may be found online.
The precategory of functors and natural transformations from small to large precategories
module category-theory.precategory-of-functors-from-small-to-large-precategories where
Imports
open import category-theory.functors-from-small-to-large-precategories open import category-theory.large-precategories open import category-theory.natural-transformations-functors-from-small-to-large-precategories open import category-theory.precategories open import foundation.identity-types open import foundation.strictly-involutive-identity-types open import foundation.universe-levels
Idea
Functors from a
small precategory C
to a
large precategory D
and
natural transformations
between them form a large precategory whose identity map and composition
structure are inherited pointwise from the codomain precategory. This is called
the precategory of functors from small to large precategories.
Definitions
The large precategory of functors and natural transformations from a small to a large precategory
module _ {l1 l2 : Level} {α : Level → Level} {β : Level → Level → Level} (C : Precategory l1 l2) (D : Large-Precategory α β) where hom-functor-large-precategory-Small-Large-Precategory : {γF γG : Level} (F : functor-Small-Large-Precategory C D γF) (G : functor-Small-Large-Precategory C D γG) → UU (l1 ⊔ l2 ⊔ β γF γG) hom-functor-large-precategory-Small-Large-Precategory = natural-transformation-Small-Large-Precategory C D comp-hom-functor-large-precategory-Small-Large-Precategory : {γF γG γH : Level} {F : functor-Small-Large-Precategory C D γF} {G : functor-Small-Large-Precategory C D γG} {H : functor-Small-Large-Precategory C D γH} → natural-transformation-Small-Large-Precategory C D G H → natural-transformation-Small-Large-Precategory C D F G → natural-transformation-Small-Large-Precategory C D F H comp-hom-functor-large-precategory-Small-Large-Precategory {F = F} {G} {H} = comp-natural-transformation-Small-Large-Precategory C D F G H associative-comp-hom-functor-large-precategory-Small-Large-Precategory : {γF γG γH γI : Level} {F : functor-Small-Large-Precategory C D γF} {G : functor-Small-Large-Precategory C D γG} {H : functor-Small-Large-Precategory C D γH} {I : functor-Small-Large-Precategory C D γI} (h : natural-transformation-Small-Large-Precategory C D H I) (g : natural-transformation-Small-Large-Precategory C D G H) (f : natural-transformation-Small-Large-Precategory C D F G) → comp-natural-transformation-Small-Large-Precategory C D F G I ( comp-natural-transformation-Small-Large-Precategory C D G H I h g) ( f) = comp-natural-transformation-Small-Large-Precategory C D F H I ( h) ( comp-natural-transformation-Small-Large-Precategory C D F G H g f) associative-comp-hom-functor-large-precategory-Small-Large-Precategory {F = F} {G} {H} {I} h g f = associative-comp-natural-transformation-Small-Large-Precategory C D F G H I f g h involutive-eq-associative-comp-hom-functor-large-precategory-Small-Large-Precategory : {γF γG γH γI : Level} {F : functor-Small-Large-Precategory C D γF} {G : functor-Small-Large-Precategory C D γG} {H : functor-Small-Large-Precategory C D γH} {I : functor-Small-Large-Precategory C D γI} (h : natural-transformation-Small-Large-Precategory C D H I) (g : natural-transformation-Small-Large-Precategory C D G H) (f : natural-transformation-Small-Large-Precategory C D F G) → comp-natural-transformation-Small-Large-Precategory C D F G I ( comp-natural-transformation-Small-Large-Precategory C D G H I h g) ( f) =ⁱ comp-natural-transformation-Small-Large-Precategory C D F H I ( h) ( comp-natural-transformation-Small-Large-Precategory C D F G H g f) involutive-eq-associative-comp-hom-functor-large-precategory-Small-Large-Precategory {F = F} {G} {H} {I} h g f = involutive-eq-associative-comp-natural-transformation-Small-Large-Precategory C D F G H I f g h id-hom-functor-large-precategory-Small-Large-Precategory : {γF : Level} {F : functor-Small-Large-Precategory C D γF} → natural-transformation-Small-Large-Precategory C D F F id-hom-functor-large-precategory-Small-Large-Precategory {F = F} = id-natural-transformation-Small-Large-Precategory C D F left-unit-law-comp-hom-functor-large-precategory-Small-Large-Precategory : {γF γG : Level} {F : functor-Small-Large-Precategory C D γF} {G : functor-Small-Large-Precategory C D γG} (a : natural-transformation-Small-Large-Precategory C D F G) → comp-natural-transformation-Small-Large-Precategory C D F G G ( id-natural-transformation-Small-Large-Precategory C D G) a = a left-unit-law-comp-hom-functor-large-precategory-Small-Large-Precategory { F = F} {G} = left-unit-law-comp-natural-transformation-Small-Large-Precategory C D F G right-unit-law-comp-hom-functor-large-precategory-Small-Large-Precategory : {γF γG : Level} {F : functor-Small-Large-Precategory C D γF} {G : functor-Small-Large-Precategory C D γG} (a : natural-transformation-Small-Large-Precategory C D F G) → comp-natural-transformation-Small-Large-Precategory C D F F G a (id-natural-transformation-Small-Large-Precategory C D F) = a right-unit-law-comp-hom-functor-large-precategory-Small-Large-Precategory { F = F} {G} = right-unit-law-comp-natural-transformation-Small-Large-Precategory C D F G functor-large-precategory-Small-Large-Precategory : Large-Precategory (λ l → l1 ⊔ l2 ⊔ α l ⊔ β l l) (λ l l' → l1 ⊔ l2 ⊔ β l l') obj-Large-Precategory functor-large-precategory-Small-Large-Precategory = functor-Small-Large-Precategory C D hom-set-Large-Precategory functor-large-precategory-Small-Large-Precategory = natural-transformation-set-Small-Large-Precategory C D comp-hom-Large-Precategory functor-large-precategory-Small-Large-Precategory {X = F} {G} {H} = comp-hom-functor-large-precategory-Small-Large-Precategory {F = F} {G} {H} id-hom-Large-Precategory functor-large-precategory-Small-Large-Precategory {X = F} = id-hom-functor-large-precategory-Small-Large-Precategory {F = F} involutive-eq-associative-comp-hom-Large-Precategory functor-large-precategory-Small-Large-Precategory {X = F} {G} {H} {I} = involutive-eq-associative-comp-hom-functor-large-precategory-Small-Large-Precategory { F = F} {G} {H} {I} left-unit-law-comp-hom-Large-Precategory functor-large-precategory-Small-Large-Precategory {X = F} {G} = left-unit-law-comp-hom-functor-large-precategory-Small-Large-Precategory { F = F} {G} right-unit-law-comp-hom-Large-Precategory functor-large-precategory-Small-Large-Precategory {X = F} {G} = right-unit-law-comp-hom-functor-large-precategory-Small-Large-Precategory { F = F} {G}
The small precategories of functors and natural transformations from a small to a large precategory
module _ {l1 l2 : Level} {α : Level → Level} {β : Level → Level → Level} (C : Precategory l1 l2) (D : Large-Precategory α β) where functor-precategory-Small-Large-Precategory : (l : Level) → Precategory (l1 ⊔ l2 ⊔ α l ⊔ β l l) (l1 ⊔ l2 ⊔ β l l) functor-precategory-Small-Large-Precategory = precategory-Large-Precategory ( functor-large-precategory-Small-Large-Precategory C D)