This is an archived version pinned as of the submission of my master's thesis. An up-to-date version may be found online.
Hilbert's ε
-operators
module foundation.hilberts-epsilon-operators where
Imports
open import foundation.functoriality-propositional-truncation open import foundation.propositional-truncations open import foundation.universe-levels open import foundation-core.equivalences open import foundation-core.function-types
Idea
Hilbert's -operator at a type A
is a map type-trunc-Prop A → A
. Contrary
to Hilbert, we will not assume that such an operator exists for each type A
.
Definition
ε-operator-Hilbert : {l : Level} → UU l → UU l ε-operator-Hilbert A = type-trunc-Prop A → A
Properties
The existence of Hilbert's ε
-operators is invariant under equivalences
ε-operator-equiv : {l1 l2 : Level} {X : UU l1} {Y : UU l2} (e : X ≃ Y) → ε-operator-Hilbert X → ε-operator-Hilbert Y ε-operator-equiv e f = (map-equiv e ∘ f) ∘ (map-trunc-Prop (map-inv-equiv e)) ε-operator-equiv' : {l1 l2 : Level} {X : UU l1} {Y : UU l2} (e : X ≃ Y) → ε-operator-Hilbert Y → ε-operator-Hilbert X ε-operator-equiv' e f = (map-inv-equiv e ∘ f) ∘ (map-trunc-Prop (map-equiv e))