This is an archived version pinned as of the submission of my master's thesis. An up-to-date version may be found online.
Monomorphisms in the category of groups
module group-theory.monomorphisms-groups where
Imports
open import category-theory.monomorphisms-in-large-precategories open import foundation.propositions open import foundation.universe-levels open import group-theory.groups open import group-theory.homomorphisms-groups open import group-theory.isomorphisms-groups open import group-theory.precategory-of-groups
Idea
A group homomorphism f : x → y
is a
monomorphism if whenever we have two group homomorphisms g h : w → x
such
that f ∘ g = f ∘ h
, then in fact g = h
. The way to state this in Homotopy
Type Theory is to say that postcomposition by f
is an
embedding.
Definition
module _ {l1 l2 : Level} (l3 : Level) (G : Group l1) (H : Group l2) (f : hom-Group G H) where is-mono-prop-hom-Group : Prop (l1 ⊔ l2 ⊔ lsuc l3) is-mono-prop-hom-Group = is-mono-prop-Large-Precategory Group-Large-Precategory l3 G H f is-mono-hom-Group : UU (l1 ⊔ l2 ⊔ lsuc l3) is-mono-hom-Group = type-Prop is-mono-prop-hom-Group is-prop-is-mono-hom-Group : is-prop is-mono-hom-Group is-prop-is-mono-hom-Group = is-prop-type-Prop is-mono-prop-hom-Group
Properties
Isomorphisms are monomorphisms
module _ {l1 l2 : Level} (l3 : Level) (G : Group l1) (H : Group l2) (f : iso-Group G H) where is-mono-iso-Group : is-mono-hom-Group l3 G H (hom-iso-Group G H f) is-mono-iso-Group = is-mono-iso-Large-Precategory Group-Large-Precategory l3 G H f