This is an archived version pinned as of the submission of my master's thesis. An up-to-date version may be found online.
The category of groups
module group-theory.category-of-groups where
Imports
open import category-theory.categories open import category-theory.large-categories open import foundation.equivalences open import foundation.fundamental-theorem-of-identity-types open import foundation.identity-types open import foundation.universe-levels open import group-theory.groups open import group-theory.isomorphisms-groups open import group-theory.precategory-of-groups
Definition
is-large-category-Group : is-large-category-Large-Precategory Group-Large-Precategory is-large-category-Group G = fundamental-theorem-id (is-torsorial-iso-Group G) (iso-eq-Group G) eq-iso-Group : {l : Level} (G H : Group l) → iso-Group G H → Id G H eq-iso-Group G H = map-inv-is-equiv (is-large-category-Group G H) Group-Large-Category : Large-Category lsuc (_⊔_) large-precategory-Large-Category Group-Large-Category = Group-Large-Precategory is-large-category-Large-Category Group-Large-Category = is-large-category-Group Group-Category : (l : Level) → Category (lsuc l) l Group-Category = category-Large-Category Group-Large-Category