This is an archived version pinned as of the submission of my master's thesis. An up-to-date version may be found online.
Equivalences between large precategories
module category-theory.equivalences-of-large-precategories where
Imports
open import category-theory.functors-large-precategories open import category-theory.large-precategories open import category-theory.natural-isomorphisms-functors-large-precategories open import foundation.universe-levels
Idea
Two large precategories C
and D
are said to be equivalent if there are
functors F : C → D
and
G : D → C
such that
G ∘ F
is naturally isomorphic to the identity functor onC
,F ∘ G
is naturally isomorphic to the identity functor onD
.
Definition
module _ {αC αD : Level → Level} {βC βD : Level → Level → Level} (C : Large-Precategory αC βC) (D : Large-Precategory αD βD) where record equivalence-Large-Precategory (γ γ' : Level → Level) : UUω where constructor make-equivalence-Large-Precategory field functor-equivalence-Large-Precategory : functor-Large-Precategory γ C D functor-inv-equivalence-Large-Precategory : functor-Large-Precategory γ' D C is-section-functor-inv-equivalence-Large-Precategory : natural-isomorphism-Large-Precategory ( comp-functor-Large-Precategory D C D functor-equivalence-Large-Precategory functor-inv-equivalence-Large-Precategory) ( id-functor-Large-Precategory D) is-retraction-functor-inv-equivalence-Large-Precategory : natural-isomorphism-Large-Precategory ( comp-functor-Large-Precategory C D C functor-inv-equivalence-Large-Precategory functor-equivalence-Large-Precategory) ( id-functor-Large-Precategory C)