This is an archived version pinned as of the submission of my master's thesis. An up-to-date version may be found online.
Path-split maps
module foundation.path-split-maps where open import foundation-core.path-split-maps public
Imports
open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.iterated-dependent-product-types open import foundation.logical-equivalences open import foundation.universe-levels open import foundation-core.contractible-types open import foundation-core.propositions
Properties
Being path-split is a property
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where abstract is-prop-is-path-split : (f : A → B) → is-prop (is-path-split f) is-prop-is-path-split f = is-prop-is-proof-irrelevant ( λ is-path-split-f → ( is-contr-product ( is-contr-section-is-equiv ( is-equiv-is-path-split f is-path-split-f)) ( is-contr-iterated-Π 2 ( λ x y → is-contr-section-is-equiv ( is-emb-is-equiv ( is-equiv-is-path-split f is-path-split-f) x y))))) abstract is-equiv-is-path-split-is-equiv : (f : A → B) → is-equiv (is-path-split-is-equiv f) is-equiv-is-path-split-is-equiv f = is-equiv-has-converse-is-prop ( is-property-is-equiv f) ( is-prop-is-path-split f) ( is-equiv-is-path-split f) equiv-is-path-split-is-equiv : (f : A → B) → is-equiv f ≃ is-path-split f equiv-is-path-split-is-equiv f = pair (is-path-split-is-equiv f) (is-equiv-is-path-split-is-equiv f) abstract is-equiv-is-equiv-is-path-split : (f : A → B) → is-equiv (is-equiv-is-path-split f) is-equiv-is-equiv-is-path-split f = is-equiv-has-converse-is-prop ( is-prop-is-path-split f) ( is-property-is-equiv f) ( is-path-split-is-equiv f) equiv-is-equiv-is-path-split : (f : A → B) → is-path-split f ≃ is-equiv f equiv-is-equiv-is-path-split f = ( is-equiv-is-path-split f , is-equiv-is-equiv-is-path-split f)
See also
- For the notion of biinvertible maps see
foundation.equivalences
. - For the notion of coherently invertible maps, also known as half-adjoint
equivalences, see
foundation.coherently-invertible-maps
. - For the notion of maps with contractible fibers see
foundation.contractible-maps
.
References
- [Shu14]
- Mike Shulman. Universal properties without function extensionality. Blog post, 11 2014. URL: https://homotopytypetheory.org/2014/11/02/universal-properties-without-function-extensionality/.
- [UF13]
- The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics. Institute for Advanced Study, 2013. URL: https://homotopytypetheory.org/book/, arXiv:1308.0729.