
MASTER THESIS

Vojtěch Štěpančík

Formalization of Homotopy Pushouts in
Homotopy Type Theory

Department of Algebra

Supervisor of the master thesis: doctor Egbert Rijke
Study programme: Mathematical Structures

Study branch: MSPN

Prague 2024

I declare that I carried out this master thesis independently, and only with the
cited sources, literature and other professional sources.
I understand that my work relates to the rights and obligations under the Act
No. 121/2000 Sb., the Copyright Act, as amended, in particular the fact that the
Charles University in Prague has the right to conclude a license agreement on
the use of this work as a school work pursuant to Section 60 subsection 1 of the
Copyright Act.

In date .
Author’s signature

i

ii

This thesis would not bewhat it is today if Egbert Rijke hadn’t responded tomy
cold email, in which I asked if he was willing to supervise my project. I would
like to express my thanks to him, not only for the positive response, but also for
his guidance on my journey to understanding and formalization of synthetic
homotopy theory, and for the work he has done for the Homotopy Type Theory
community at large, through hiswrittenmaterial and the agda-unimath library,
which he initiated with his colleagues and actively maintains. I’m happy to be
a part of it.

I would like to thank Fredrik Bakke, for our conversations both academic
and personal. The office feels a lot emptier without him sharing his observa-
tions about simplicial type theory. I also appreciated his code review of my
contributions to the library.

I amgrateful tomy family for being very excited aboutmywork, even though
I repeatedly failed to properly explain what I was doing, by nobody’s fault but
my own, because I often lacked the necessary understanding myself. It moti-
vated me to try and find more intuitive descriptions of the code I was writing;
hopefully some of it is reflected in the thesis.

I also want to thank my colleague and friend Max Hollmann, for often sit-
ting down with me at a café after a long day’s work, and listening to my tired
rambling about commuting prisms. He and the rest of our friend group are a
big reason why I remained motivated to keep working on my master’s studies.
I also appreciate the staff at Cafe Prostoru_, where much of the research and
formalization for this thesis was done, for tolerating my everyday gloomy pres-
ence, with my face buried in my laptop, and for lifting my spirits with pretty
latte art on my Chai Latté.

Finally, I would like to thank Matěj Dostál, who first taught me logic and
type theory, and pointed me in the direction of Homotopy Type Theory in my
formative years as an academic.

Vojtěch Štěpančík, Ljubljana

iii

iv

Title: Formalization of Homotopy Pushouts in Homotopy Type Theory

Author: Vojtěch Štěpančík

Department: Department of Algebra

Supervisor: doctor Egbert Rijke

Abstract: Homotopy pushouts can be constructed as higher inductive types in
the logical framework of Homotopy Type Theory, where one may engage syn-
tactic methods to explore their properties, and formalize them in a proof assis-
tant. This thesis focuses on the descent property, due to Rijke [12], which char-
acterizes type families over pushouts; the flattening lemma, due to Brunerie [5],
which characterizes the total spaces of such families; and the universal property
of identity types of pushouts, due to Kraus and von Raumer [7]. We also build
elementary infrastructure for sequential colimits, following a paper of Sojakova,
van Doorn, and Rijke [17]. We then use the built machinery to provide a partial
formalized proof ofWärn’s zigzag construction of identity types of pushouts as
sequential colimits [19], leaving one coherence problem open. The thesiswas si-
multaneously formalized in the proof assistant Agda [2] and results contributed
to the agda-unimath library [15].

Keywords: synthetic homotopy theory, homotopy type theory, univalent foun-
dations of mathematics, formalization, homotopy pushouts

Název práce: Formalizace homotopických pushoutů v homotopické teorii typů

Autor: Vojtěch Štěpančík

Katedra: Katedra algebry

Vedoucí diplomové práce: doctor Egbert Rijke

Abstrakt: Homotopické pushouty mohou být zkonstruovány jako vyšší induk-
tivní typy v logickém rámci Homotopické Teorie Typů, ve kterém lze použít
syntaktické metody pro zkoumání jejich vlastností, a formalizovat je v důka-
zovém asistentu. Tato diplomová práce se zaměřuje na vlastnost sestupu, pop-
sanou Rijkem [12], která charakterizuje rodiny typů nad pushouty; na lemma o
zplošťování, popsanéBruneriem [5], které charakterizuje totální prostory takových
rodin; a univerzální vlastnost typů identifikací v pushoutech, formulovanou
Krausem a von Raumerem [7]. Vybudujeme také základní infrastrukturu pro
práci se sekvenčními kolimitami, podle článku Sojákové, van Doorna a Rijkeho
[17]. Vybudované nástroje posléze použijeme na částečný formalizovaný důkaz
Wärnovy klikaté konstrukce typů identifikací v pushoutech jako sekvenčních
kolimit [19], s jedním neuzavřeným problémem koherence. Práce byla pos-
tupně formalizována v důkazovém asistentu Agda [2], a výsledky přispěny do
knihovny agda-unimath [15].

Klíčová slova: syntetická homotopická teorie, homotopická teorie typů, univa-
lentní základy matematiky, formalizace, homotopické pushouty

v

vi

Contents

Introduction 3

1 Homotopy Type Theory 5

2 Pushouts 13
2.1 Universal property . 14
2.2 Descent property . 19
2.3 Flattening lemma . 28
2.4 Identity systems . 32

3 Other colimits 37
3.1 Coequalizers . 37
3.2 Sequential colimits . 41

3.2.1 Functoriality . 46
3.2.2 Colimits of shifted sequential diagrams 51
3.2.3 Descent property and flattening lemma 57

4 Partial proof of correctness of the zigzag construction 63
4.1 Zigzags between sequential diagrams 63
4.2 The zigzag construction of identity types 66
4.3 Partial proof of correctness . 71

5 Conclusion 79

Bibliography 81

A List of attachments 83

1

2

Introduction

Homotopy Type Theory [18] is a logical framework built on Martin-Löf’s inten-
sional type theory [9] and the univalence axiom, which characterizes identity
types of universes. It is inspired by the homotopy interpretation of dependent
type theory [4], in which types are interpreted as spaces, elements of types as
points in the spaces, and identifications of elements as paths between the points.
Using proof assistants such as Agda [2], one can translate proofs in Homotopy
Type Theory into programs in a programming language, engaging in an activ-
ity called “formalization” [10]. The validity of the constructions is verified by
type-checking the programs.

This work focuses on homotopy pushouts — specifically we provide an ex-
position and formalization of the descent property [12] and flattening lemma
[5], and use the built infrastructure to formally construct a partial proof of cor-
rectness of Wärn’s zigzag construction of identity types of pushouts [19], leav-
ing one coherence problem open. Efforts to finish the formalization will con-
tinue, in response to Wärn’s statement, taken from another paper of his about
the zigzag construction: “At the time of writing, no such formalization has been
carried out, but we believe it would be feasible and worthwhile.” [20]

On top of pushouts we construct sequential colimits. The infrastructure we
build is more extensive than strictly necessary for the zigzag construction, since
we anticipate itwill be usefulwhen formalizing its applications. The formalized
material comes from a paper on treatment of sequential colimits in Homotopy
Type Theory by Sojakova, van Doorn and Rijke [17]. As a byproduct we started
an effort to collect pages for formalization of results from the literature in the
agda-unimath library. Even though it is not of strictlymathematical nature, this
initiative is relevant to the social aspect of formalized mathematics, as it builds
more documentation, makes the development accessible, and sets an example
for beginning formalizers.

An important part of the thesis is the reusable and documented formaliza-
tion of the presented material in the agda-unimath library [15]. The specific
code contributions are listed in Appendix A. The relevant proofs were “unfor-
malized” into English and are presented below.

Organization

The thesis is divided into four chapters. Chapter 1 provides an abridged intro-
duction to Homotopy Type Theory, presenting the necessary foundational re-
sults on which we build. Those results are taken either from the “HoTT Book”
[18], or from Rijke’s textbook [13] and the formalization in the agda-unimath li-
brary. Chapter 2 introduces pushouts as structures satisfying a universal prop-

3

https://unimath.github.io/agda-unimath/
https://unimath.github.io/agda-unimath/

erty, and describes some of their elementary properties, namely formation of
type families over pushouts, a universal property of total spaces of type families
over pushouts, and a universal property of identity systems of pushouts. Chap-
ter 3 defines coequalizers and sequential colimits as other kinds of colimits, and
shows how their existence and properties can be derived from pushouts. The
focus of the chapter is primarily on sequential colimits, as the constructions are
used in the succeeding Chapter 4. The latter describes an explicit construction
claimed to be an identity system of pushouts, built up of sequential colimits of
pushouts, due to Wärn [19]. It then proceeds to describe a formalized partial
proof that the construction is indeed an identity system, which has been carried
out for the thesis.

Contributions

Chapter 1 and first section of Chapter 2 consist of exposition to material that
had already been formalized in the library. Formalization of all other parts of
the thesis are original contributions to the library. The application of descent
data and their sections to identity systems, the presented proof of the flatten-
ing lemma, and the partial proof of correctness of the zigzag construction are
original research.

4

Chapter 1

Homotopy Type Theory

This section briefly introduces important concepts and results from Homotopy
Type Theory, the formal setting of the thesis. For a more extensive account, see
the “HoTT Book” [18], or Rijke’s textbook [13].

In Homotopy Type Theory, the basic objects of study are types, which may
have elements. An element 𝑎 of type 𝐴 is written 𝑎 ∶ 𝐴. In contrast to set theory,
where an element can belong to many different sets, an element cannot be of
multiple different types. Types themselves are elements of special types called
universes, written 𝐴 ∶ 𝒰. To avoid inconsistency [6], we assume an infinite hi-
erarchy of universes, such that a universe 𝒰 is an element of a bigger universe,
𝒰 ∶ 𝒰+. We generally do not comment on the handling of universe levels in the
text of the thesis, but the attached formalization is developed in the maximally
universe-polymorphic way possible.

For any two types 𝐴 and 𝐵, there is the type of functions 𝐴 → 𝐵, whose
elements are functions taking elements of 𝐴 to elements of 𝐵. For any type 𝐴
there is the identity function id ∶ 𝐴 → 𝐴, and functions can be composed using
the composition operator

− ∘ − ∶ (𝐵 → 𝐶) → (𝐴 → 𝐵) → (𝐴 → 𝐶),

which is associative and unital with respect to id.
Elements of a function type into a universe are called type families: a type

family 𝑃 over 𝐴 is a function 𝑃 ∶ 𝐴 → 𝒰. The type 𝑃(𝑎) for some specific 𝑎 ∶ 𝐴
is occasionally referred to as the fiber at 𝑎.

Given a type family 𝑃 ∶ 𝐴 → 𝒰 wemay construct the Sigma type, or its total
space, Σ(𝑎 ∶ 𝐴). 𝑃 (𝑎) (or Σ𝐴𝑃). Elements of the type Σ𝐴𝑃 are dependent pairs
(𝑎, 𝑝) where 𝑎 is an element of 𝐴 and 𝑝 is an element of 𝑃(𝑎).

We may also construct the Pi type Π(𝑎 ∶ 𝐴). 𝑃 (𝑎). We prefer the syntax
(𝑎 ∶ 𝐴) → 𝑃(𝑎) for Π types. Elements of the type (𝑎 ∶ 𝐴) → 𝑃(𝑎) are dependent
functions 𝑓 which take an element 𝑎 ∶ 𝐴 to an element 𝑓(𝑎) ∶ 𝑃 (𝑎). They are
also referred to as sections of 𝑃. Regular function types 𝐴 → 𝐵 are Π types
where the codomain is constant over 𝐴.

For two elements of the same type 𝑥, 𝑦 ∶ 𝐴 there is the type of identifications
Id(𝑥, 𝑦), usually written as 𝑥 = 𝑦. The identity types are in a precise sense
generated by the elements refl ∶ 𝑥 = 𝑥 for every 𝑥 ∶ 𝐴. This fact is encoded in
their elimination principle, known as the based 𝐽 rule [11]. The 𝐽 rule is also
called the induction principle of identifications or path induction.

5

Theorem 1.0.1. Consider a type 𝐴 and its element 𝑎0 ∶ 𝐴. Given a type family 𝑃 ∶
(𝑎 ∶ 𝐴) → (𝑎0 = 𝑎) → 𝒰, there is a function

𝐽 ∶ 𝑃 (𝑎0, refl) → ((𝑎 ∶ 𝐴)(𝑟 ∶ 𝑎0 = 𝑎) → 𝑃(𝑎, 𝑟))

such that for any point 𝑝0 ∶ 𝑃 (𝑎0, refl) it computes as 𝐽(𝑝0, 𝑎0, refl) ≐ 𝑝0.

We distinguish between identifications and the metatheoretical concept of
judgmental equality. The elements 𝑥 and 𝑦 are identified if there is an element
of the type 𝑥 = 𝑦. They are judgmentally equal, denoted 𝑥 ≐ 𝑦, if they compute to
syntactically identical expressions.

Elements of identity types can themselves be identified— for all 𝑝, 𝑞 ∶ 𝑥 = 𝑦,
there is the type 𝑝 = 𝑞, which also has its own identity type, and so on. The
identity types endow all types with a structure of an ∞-groupoid — there are
inversion and composition operations

(−)−1 ∶ (𝑥 = 𝑦) → (𝑦 = 𝑥)
− • − ∶ (𝑥 = 𝑦) → (𝑦 = 𝑧) → (𝑥 = 𝑦)

such that taking an inverse is an involution, and concatenation is associative
and unital with respect to refl. Most of the just mentioned laws hold up to a
higher identification, e.g. the elements 𝑝• refl and 𝑝 are not judgmentally equal,
but there is an identification runit ∶ (𝑝 • refl) = 𝑝. In our setting only the left
unit law is judgmental, i.e. there is a judgmental equality (refl •𝑝) ≐ 𝑝.

Identifications of elements 𝑥, 𝑦 ∶ 𝐴 induce a map between fibers for any type
family 𝑃 ∶ 𝐴 → 𝒰. This is called the transport map

tr𝑃 ∶ (𝑥 = 𝑦) → 𝑃(𝑥) → 𝑃(𝑦).

The transport map distributes over concatenation of identifications.

Lemma 1.0.2. Given a type 𝐴, a type family 𝑃 ∶ 𝐴 → 𝒰, elements 𝑥, 𝑦, 𝑧 ∶ 𝐴, identi-
fications 𝑝 ∶ 𝑥 = 𝑦 and 𝑞 ∶ 𝑦 = 𝑧, and an element 𝑢 ∶ 𝑃 (𝑥), there is an identification

tr𝑃(𝑝 • 𝑞, 𝑢) = tr𝑃(𝑞, tr𝑃(𝑝, 𝑢)).

Transport in type families of certain shapes can be characterized. For exam-
ple, transport in the type family Id(𝑎0) behaves like concatenation.

Lemma 1.0.3. Given identifications 𝑝 ∶ 𝑥 = 𝑦 and 𝑞 ∶ 𝑎0 = 𝑥, there is an identification

trId(𝑎0)(𝑝, 𝑞) = 𝑞 • 𝑝.

Transport in a family of function types behaves like composition.

Lemma 1.0.4. Given a type 𝐴, type families 𝑃 ∶ 𝐴 → 𝒰 and 𝑄 ∶ 𝐴 → 𝒱, and an
identification 𝑥 = 𝑦 in 𝐴, then for all ℎ ∶ 𝑃 (𝑥) → 𝑄(𝑥) there is an identification

tr𝜆𝑎→(𝑃(𝑎)→𝑄(𝑎))(𝑝, ℎ) = (tr𝑄(𝑝) ∘ ℎ ∘ tr𝑃(𝑝−1)).

6

Regular and dependent functions preserve identifications. Consider a func-
tion 𝑓 ∶ 𝐴 → 𝐵, a dependent function ℎ ∶ (𝑎 ∶ 𝐴) → 𝑃(𝑎), and elements 𝑥, 𝑦 ∶ 𝐴.
Preservation of identifications is expressed by the maps

ap
𝑓

∶ (𝑥 = 𝑦) → (𝑓𝑥 = 𝑓𝑦)

apd
ℎ

∶ (𝑝 ∶ 𝑥 = 𝑦) → tr𝑃(𝑝, ℎ𝑥) = ℎ𝑦.

Lemma 1.0.5. Given a map 𝑓 ∶ 𝐴 → 𝐵, a type family 𝑃 ∶ 𝐵 → 𝒰, elements 𝑥, 𝑦 ∶ 𝐴,
𝑢 ∶ 𝑃 (𝑓𝑥), and an identification 𝑝 ∶ 𝑥 = 𝑦, there is an identification

tr𝑃(ap
𝑓
(𝑝), 𝑢) = tr(𝑃∘𝑓)(𝑝, 𝑢).

Functionswith a shared domain and a shared codomain can be compared by
a relation called homotopy. Given two maps 𝑓, 𝑔 ∶ (𝑎 ∶ 𝐴) → 𝑃(𝑎), a homotopy
between them is an element of the type (𝑎 ∶ 𝐴) → (𝑓(𝑎) = 𝑔(𝑎)), written as
𝑓 ∼ 𝑔. Since the type of homotopies is the type of pointwise identifications, the
operations on identifications induce operations on homotopies, namelywe have

(−)−1 ∶ (𝑓 ∼ 𝑔) → (𝑔 ∼ 𝑓)
− •ℎ − ∶ (𝑓 ∼ 𝑔) → (𝑔 ∼ ℎ) → (𝑓 ∼ ℎ)

and the element refl-htpy ∶ 𝑓 ∼ 𝑓 for all functions 𝑓.
Additionally, we introduce left and rightwhiskering operations, givenmaps

𝑓, 𝑔 ∶ 𝐴 → 𝐵, a homotopy 𝐻 ∶ 𝑓 ∼ 𝑔, and maps 𝑖 ∶ 𝑋 → 𝐴 and 𝑗 ∶ 𝐵 → 𝐶

𝑗 ⋅𝑙 𝐻 ∶= (𝜆𝑥 → ap
𝑓
(𝐻𝑥)) ∶ (𝑗 ∘ 𝑓) ∼ (𝑗 ∘ 𝑔)

𝐻 ⋅𝑟 𝑖 ∶= (𝜆𝑥 → 𝐻(𝑖𝑥)) ∶ (𝑓 ∘ 𝑖) ∼ (𝑔 ∘ 𝑖).

Ahomotopy 𝐻 ∶ 𝑓∼𝑔 can be diagrammatically represented as a cell between
parallel arrows:

𝐴 𝐵.
𝑔

𝑓

𝐻

By convention, homotopies in diagrams go from bottom left to top right. We
often mentionmore complex shapes: a commuting triangle of maps is a homo-
topy ℎ ∼ (𝑔 ∘ 𝑓), and a commuting square of maps is a homotopy (𝑖 ∘ 𝑗) ∼ (𝑘 ∘ 𝑙),
pictured as

𝐴 𝐵

𝐶

𝑓

ℎ 𝑔

𝐴 𝐵

𝐶 𝐷.

𝑙

𝑗 𝑘

𝑖

We will occasionally encounter higher shapes, e.g. a commuting cube is a ho-
motopy of homotopies

𝛼 ∶ ((𝑖 ⋅𝑙 𝐵𝐿) •ℎ (𝐹𝐿 ⋅𝑟 𝑓 ′) •ℎ (ℎ𝐷 ⋅𝑙 𝑇))
∼ ((𝐵 ⋅𝑟 ℎ𝐴) •ℎ (𝑗 ⋅𝑙 𝐵𝑅) •ℎ (𝐹𝑅 ⋅𝑟 𝑔′)),

7

where 𝐵𝐿, 𝐹𝐿, 𝑇, 𝐵, 𝐵𝑅 and 𝐹𝑅 are homotopies which fit as the back left, front
left, top, bottom, back right and front right faces, respectively, of the following
cubical diagram:

𝐴′

𝐵′ 𝐴 𝐶′

𝐵 𝐷′ 𝐶

𝐷.

𝑓′
ℎ𝐴

𝑔′

ℎ𝐵

𝑓 𝑔

𝑗′

ℎ𝐶

𝑖

𝑖′

ℎ𝐷 𝑗

Given a map 𝑓 ∶ 𝐴 → 𝐵, we call a converse map 𝑠 ∶ 𝐵 → 𝐴 its section if
it comes equipped with a homotopy (𝑓 ∘ 𝑠) ∼ id, and likewise we call a map
𝑟 ∶ 𝐵 → 𝐴 a retraction of 𝑓 if there is a homotopy (𝑟 ∘ 𝑓) ∼ id.

A function 𝑓 ∶ 𝐴 → 𝐵 is an equivalence if it is equipped with both a section
and a retraction. This is different from the classical notion of being an isomor-
phism, i.e. having a single inverse 𝑔 ∶ 𝐵 → 𝐴 and proofs that 𝑔 is a section and a
retraction of 𝑓. Every isomorphism induces an equivalence, and it can be shown
that every equivalence induces an isomorphism, but this correspondence is not
one-to-one. We denote an equivalence between 𝐴 and 𝐵 by 𝑓 ∶ 𝐴 ≃ 𝐵.

We can already give examples of equivalences:

Lemma 1.0.6. For every identification 𝑝 ∶ 𝑥 = 𝑦 in 𝐴 and an element 𝑧 ∶ 𝐴, the
operations

(−)−1 ∶ (𝑥 = 𝑦) → (𝑦 = 𝑥)
− • 𝑝 ∶ (𝑧 = 𝑥) → (𝑧 = 𝑦)
𝑝 • − ∶ (𝑦 = 𝑧) → (𝑥 = 𝑧)

are equivalences.

Lemma 1.0.7. For every type 𝐴, type family 𝑃 ∶ 𝐴 → 𝒰, two elements 𝑥, 𝑦 ∶ 𝐴 and
an identification 𝑝 ∶ 𝑥 = 𝑦, the transport map tr𝑃 𝑝 ∶ 𝑃 (𝑥) → 𝑃(𝑦) is an equivalence.

One of the elementary results about equivalences we use is their 3-for-2
property, an extension of the fact that they are closed under composition.

Lemma 1.0.8 (3-for-2 property of equivalences). Consider a commuting triangle of
maps

𝐴 𝐵

𝐶.

𝑓

ℎ 𝑔

If any two of the maps are equivalences, then so is the third.

8

Every function 𝑓 ∶ 𝐴 → 𝐵 gives rise to the type family of fibers fib𝑓 ∶ 𝐵 → 𝒰;
the fiber of 𝑓 over 𝑏 ∶ 𝐵 is the type of elements 𝑎 ∶ 𝐴 equipped with an identifi-
cation of type 𝑓𝑎 = 𝑏.

We note that equivalences can be characterized by a special property of their
fibers. To state it, we need a notion of contractibility— a type 𝐴 is contractible if
there is a point 𝑎0 ∶ 𝐴 and a family of identifications of type (𝑎 ∶ 𝐴) → (𝑎0 = 𝑎).

Lemma 1.0.9. A map 𝑓 ∶ 𝐴 → 𝐵 is an equivalence if and only if for all 𝑏 ∶ 𝐵 the fiber
fib𝑓(𝑏) is contractible.

For a thorough discussion of different characterization of equivalences, refer
to Chapter 4 of the HoTT Book [18].

The hallmark of Homotopy Type Theory is the univalence axiom, due to
Voevodsky, which characterizes the identity types of universes.

Axiom 1.0.10 (Univalence). For any two types 𝐴, 𝐵 ∶ 𝒰, the map

equiv-eq ∶ (𝐴 = 𝐵) → (𝐴 ≃ 𝐵),

defined by taking refl to the identity equivalence id, is an equivalence.

The map equiv-eq gives an alternative way to turn an identification 𝑥 = 𝑦
into an equivalence 𝑃(𝑥) ≃ 𝑃(𝑦). This turns out to be the same equivalence as
transport.

Lemma 1.0.11. Given an identification 𝑝 ∶ 𝑥 = 𝑦 in 𝐴 and a type family 𝑃 ∶ 𝐴 → 𝒰,
the equivalences tr𝑃(𝑝) and equiv-eq(ap

𝑃
(𝑝)) are identical.

Voevodsky showed that function extensionality follows from univalence.
For a simplified proof, see [18, section 4.9].

Theorem 1.0.12 (Function extensionality). For any two types 𝐴 and 𝐵, and maps
𝑓, 𝑔 ∶ 𝐴 → 𝐵, the map

htpy-eq ∶ (𝑓 = 𝑔) → (𝑓 ≃ 𝑔),

defined by taking refl to the reflexivity homotopy refl-htpy, is an equivalence. We call
its inverse eq-htpy.

Function extensionality gives us an inductionprinciple for homotopies, anal-
ogous to path induction.

Lemma 1.0.13. Consider a type 𝐴, a type family 𝑃 ∶ 𝐴 → 𝒰, and a function
𝑓 ∶ (𝑎 ∶ 𝐴) → 𝑃(𝑎). Given a type family 𝐶 ∶ (𝑔 ∶ (𝑎 ∶ 𝐴) → 𝑃(𝑎)) → (𝑓 ∼ 𝑔) → 𝒱,
there is a function

ind-htpy
𝐶

∶ 𝐶(𝑓, refl-htpy) → ((𝑔 ∶ (𝑎 ∶ 𝐴) → 𝑃(𝑎))(𝑟 ∶ 𝑓 ∼ 𝑔) → 𝐶(𝑔, 𝑟))

and for each 𝑐0 ∶ 𝐶(𝑓, refl-htpy) an identification ind-htpy
𝐶

(𝑐0, 𝑓, refl-htpy) = 𝑐0.

9

Definition 1.0.14. Consider a type 𝐴 with a basepoint 𝑎0 ∶ 𝐴, and a pair (𝑃 , 𝑝0)
consisting of a type family 𝑃 ∶ 𝐴 → 𝒰 and a point 𝑝0 ∶ 𝑃 (𝑎0). For any type
family 𝑄 ∶ (𝑎 ∶ 𝐴) → 𝑃(𝑎) → 𝒱, there is an evaluation map

ev-refl-id-system
𝑄

∶ ((𝑎 ∶ 𝐴)(𝑝 ∶ 𝑃 (𝑎)) → 𝑄(𝑎, 𝑝)) → 𝑄(𝑎0, 𝑝0)

defined as ℎ ↦ ℎ(𝑎0, 𝑝0). The pair (𝑃 , 𝑝0) is an identity system if for all 𝑄 the
evaluation map ev-refl-id-system

𝑄
has a section, i.e. a converse map

ind𝑄 ∶ 𝑄(𝑎0, 𝑝0) → ((𝑎 ∶ 𝐴)(𝑝 ∶ 𝑃 (𝑎)) → 𝑄(𝑎, 𝑝))

such that for all 𝑞0 ∶ 𝑄(𝑎0, 𝑝0) there is an identification ind𝑄(𝑞0, 𝑎0, 𝑝0) = 𝑞0.

The based 𝐽 rule essentially states that (Id(𝑎0), refl) is an identity system.

Lemma 1.0.15. Given a type 𝐴 with a basepoint 𝑎0, the pair (Id(𝑎0), refl) is an identity
system.

The following is a variation of the encode-decode method due to Licata and
Shulman [8].

Theorem 1.0.16 (Fundamental theorem of identity types). Given a type 𝐴, an
element 𝑎0 ∶ 𝐴, a type family 𝑃 ∶ 𝐴 → 𝒰, and a function 𝑓 ∶ (𝑥 ∶ 𝐴) → (𝑎0 = 𝑥) →
𝑃(𝑥), the following are logically equivalent

• The function 𝑓(𝑥) ∶ (𝑎0 = 𝑥) → 𝑃(𝑥) is an equivalence for all 𝑥 ∶ 𝐴

• The type Σ𝐴𝑃 is contractible.

Corollary 1.0.17. For a type 𝐴 with an element 𝑎0 ∶ 𝐴 and a type family 𝑃 ∶ 𝐴 → 𝒰
with a point 𝑝0 ∶ 𝑃 (𝑎0), it holds that the type of families of equivalences

𝑒 ∶ (𝑥 ∶ 𝐴) → ((𝑎0 = 𝑥) ≃ 𝑃(𝑥)),

such that 𝑒(𝑎0, refl) = 𝑝0, is contractible.

Just as equivalences characterize the identity types in universes, and homo-
topies characterize the identity types in Π types, there is a characterization of
identity types in Σ types.

Lemma 1.0.18. Given a type 𝐴 and a type family 𝑃 ∶ 𝐴 → 𝒰, the map

pair-eq-Σ ∶ ((𝑥, 𝑠) = (𝑦, 𝑡)) → Σ(𝑝 ∶ 𝑥 = 𝑦). tr𝑃(𝑝, 𝑠) = 𝑡,

which sends refl to (refl, refl), is an equivalence, for all 𝑥, 𝑦 ∶ 𝐴, 𝑠 ∶ 𝑃 (𝑥) and 𝑡 ∶ 𝑃 (𝑦).

We can dispense without mentioning transport if we have characterizations
of identity types of the individual components. The following theorem, known
as the Structure Identity Principle, is due to Aczel [1].

10

Theorem 1.0.19 (Structure identity principle). Consider a type 𝐴 with a point 𝑎0 ∶ 𝐴,
type families 𝑃 ∶ 𝐴 → 𝒰 and 𝑄 ∶ 𝐴 → 𝒱 pointed by 𝑝0 ∶ 𝑃 (𝑎0) and 𝑞0 ∶ 𝑄(𝑎0), re-
spectively, and a type family 𝐷 ∶ (𝑥 ∶ 𝐴) → (𝑃(𝑥) → 𝑄(𝑥) → 𝒰). If 𝑄 is an identity
system at 𝑞0 and there is an element 𝑑0 ∶ 𝐷(𝑎0, 𝑝0, 𝑞0), then the following are equiva-
lent:

• Any family of maps 𝑓 ∶ (𝑝 ∶ 𝑃 (𝑎0)) → ((𝑝0 = 𝑝) → 𝐷(𝑎0, 𝑝, 𝑞0)) is a family of
equivalences

• The total space Σ(𝑝 ∶ 𝑃 (𝑎0)). 𝐷(𝑎0, 𝑝, 𝑞0) is contractible.

The last fact we will need is distributivity of Π over Σ, sometimes called the
“type theoretic principle of choice”. It states that a dependent function into a Σ
type corresponds to a dependent pair of dependent functions.

Lemma 1.0.20. Given a type 𝐴, a type family 𝑃 ∶ 𝐴 → 𝒰 and another type family
𝑄 ∶ (𝑎 ∶ 𝐴) → 𝑃(𝑎) → 𝒱, there is an equivalence

((𝑥 ∶ 𝐴) → Σ(𝑝 ∶ 𝑃 (𝑥)). 𝑄(𝑥, 𝑝))
≃ (Σ(ℎ ∶ (𝑥 ∶ 𝑋) → 𝑃(𝑥)). (𝑥 ∶ 𝑋) → 𝑄(𝑥, ℎ(𝑥))).

11

12

Chapter 2

Pushouts

Pushouts are a well-known concept from category theory, encoding the opera-
tion of putting two or more objects side-by-side and abstractly “gluing” some
parts together. Forming a homotopy pushout of a span of abstract spaces
𝐴 𝑆 𝐵𝑓 𝑔 corresponds to forming the coproduct 𝐴 + 𝐵, and then

adding a path from inl(𝑓𝑠) to inr(𝑔𝑠) for every 𝑠 ∶ 𝑆. Thus pushout can be
represented by the following higher inductive type:

data Pushout {S A B : Type} (f : S → A) (g : S → B) : Type where
inl : A → Pushout f g
inr : B → Pushout f g
glue : (s : S) → inl(f s) = inr(g s)

TheAgdaproof assistant, inwhich the formalization is carried out, only sup-
ports definition of higher inductive types in its cubical mode, which the agda-
unimath library does not use. Instead, we formalize pushouts as structured
types satisfying a universal property, which encodes the elimination principle
one would get from their definition as a higher inductive type. The downside
is that maps induced by the universal property only compute up to an identifi-
cation, i.e. a map 𝑓 ∶ 𝑋 → 𝑌 defined by a cocone (𝑖, 𝑗, 𝐻) applied to an element
inl(𝑎) ∶ 𝑋 does not reduce to 𝑖(𝑎), which complicates the development. On
the other hand, it encourages a style of formalization which does not rely on
the standard pushout type as much, making the formalization more modular,
because theorems deriving the universal property for non-standard pushouts
may be used directly, instead of going through an induced equivalence with the
standard pushouts.

We open the chapter by introducing pushouts as structured types satisfy-
ing a universal property. We then proceed to discuss the descent property of
pushouts, which describes how type families over pushouts correspond to type
families over its components with a compatibility condition. We develop an in-
frastructure for relating other concepts between the realm of type families and
the realmof descent data, such as sections of type families and fiberwise equiva-
lences. The succeeding section describes the flattening lemma, which identifies
Σ types over pushouts as pushouts themselves. Descent and flattening together
allow us to concisely state an induction principle of identity types of pushouts,
by identifying certain pointed descent data as identity systems, analogously to
identity systems defined in Chapter 1.

13

2.1 Universal property
To define pushouts, we first define their indexing diagrams, the span diagrams.

Formally, we differentiate between the concept of a “span”, which is an ele-
ment on a structure with a fixed domain and codomain, and a “span diagram”,
which is a pair of types with a span between them. The distinction is impor-
tant when looking at morphisms of these structures — a morphism of spans
is a map between the spanning types, equipped with two homotopies for the
appropriate triangles, while a morphism of span diagrams is a natural trans-
formation, consisting of three maps and two squares. The presented material
does not formally require the notion of spans, so we introduce span diagrams
as the primitive notion. A similar distinction may be done between “cocone
structure” on a specific vertex type, and a “cocone” as a type equipped with a
cocone structure. It is not realized in the current work, but there are plans to
make the change in the library.

Definition 2.1.1. A span diagram is a quintuple (𝐴, 𝐵, 𝑆, 𝑓, 𝑔), where 𝐴, 𝐵 and
𝑆 are types, and 𝑓 ∶ 𝑆 → 𝐴 and 𝑔 ∶ 𝑆 → 𝐵 are ordinary maps.

We call 𝐴, 𝐵 and 𝑆 the domain, codomain, and the spanning type of the
span diagram, respectively.

Remark 2.1.2. In the prose, wewill often write 𝒮 or 𝒮≐(𝑓, 𝑔) for a span diagram,
implicitly introducing the relevant types as the domains and codomains of the
maps 𝑓 and 𝑔, whichwill by convention be called 𝐴, 𝐵 and 𝑆 as in the definition.
We hope to not cause confusion by this choice.

Definition 2.1.3. Given a span diagram 𝒮 ≐ (𝑓, 𝑔) and a type 𝑋, a cocone under
𝒮 on 𝑋 is a triple (𝑖, 𝑗, 𝐻), where 𝑖 ∶ 𝐴 → 𝑋 and 𝑗 ∶ 𝐵 → 𝑋 are ordinary maps,
and 𝐻 is a homotopy witnessing that the square

𝑆 𝐵

𝐴 𝑋

𝑔

𝑓 𝑗

𝑖

commutes, i.e. 𝐻 ∶ 𝑖 ∘ 𝑓 ∼ 𝑗 ∘ 𝑔.
We write cocone(𝒮, 𝑋) for the type of cocones under 𝒮 on 𝑋.

To define what a “colimiting cocone” is in type theory, we derive inspiration
from the categorical description as a coclassifier of cocones under the same span
diagram: a cocone 𝑐 under 𝒮 on 𝑋 is a pushout if maps 𝑋 → 𝑌 are in bijection
with cocones under 𝒮 on 𝑌. There is a natural construction for extending a
cocone 𝑐 on 𝑋 by amap 𝑋 → 𝑌 to a cocone on 𝑌, andwe say that 𝑐 is a pushout of
𝒮 exactly when this extension map is an equivalence (𝑋 → 𝑌) ≃ cocone(𝒮, 𝑌).

Construction 2.1.4. Given a cocone 𝑐 ≐ (𝑖, 𝑗, 𝐻) ∶ cocone(𝒮, 𝑋) and a type 𝑌 we
construct a map

cocone-map𝑌
𝑐

∶ (𝑋 → 𝑌) → cocone(𝒮, 𝑌)

which sends ℎ to (ℎ ∘ 𝑖, ℎ ∘ 𝑗, ℎ ⋅𝑙 𝐻).
We may omit the upper index 𝑌 or the lower index 𝑐, or both, if the appro-

priate value is clear from context.

14

Definition 2.1.5. A cocone 𝑐 under 𝒮 on 𝑋 satisfies the universal property of
pushouts if for all types 𝑌 the map cocone-map𝑌

𝑐
is an equivalence.

A cocone satisfying the universal property of pushouts is called a pushout.
We will sometimes abuse notation and call just the type 𝑋 the pushout.

Having cocone-map be an equivalencemeans that we not only have the con-
versemap, whichmaps cocones to functions, but additionally the conversemap
is a section and a retraction. In particular, it being a section means that the co-
cone induced by the obtained map is the same as the original cocone. However
identifications of cocones are not very practical objects. Instead of using them
directly, we characterize the identity types of cocones as homotopies of cocones.

Definition 2.1.6. Given a span diagram 𝒮 ≐ (𝑓, 𝑔) and two cocones 𝑐 ≐ (𝑖, 𝑗, 𝐻)
and 𝑐′ ≐ (𝑖′, 𝑗′, 𝐻′) on 𝑋, the type of homotopies between 𝑐 and 𝑐′, denoted
𝑐 ∼ 𝑐′, is the type of triples (𝐾𝐴, 𝐾𝐵, 𝛼), where 𝐾𝐴 and 𝐾𝐵 are homotopies

𝐾𝐴 ∶ 𝑖 ∼ 𝑖′

𝐾𝐵 ∶ 𝑗 ∼ 𝑗′

and 𝛼 is a coherence witnessing that the following square of homotopies com-
mutes

𝑖 ∘ 𝑓 𝑖′ ∘ 𝑓

𝑗 ∘ 𝑔 𝑗′ ∘ 𝑔.

𝐾𝐴⋅𝑟𝑓

𝐻 𝐻′

𝐾𝐵⋅𝑟𝑔

Construction 2.1.7. Given a cocone 𝑐 ≐ (𝑖, 𝑗, 𝐻) ∶ cocone(𝒮, 𝑋), construct the
reflexivity homotopy cocone-refl-htpy ∶ 𝑐 ∼ 𝑐 from the data

refl-htpy ∶ 𝑖 ∼ 𝑖
refl-htpy ∶ 𝑗 ∼ ℎ
runit-htpy ∶ 𝐻 •ℎ refl-htpy ∼𝐻.

Lemma 2.1.8. For a span diagram 𝒮 and two cocones 𝑐 and 𝑐′ on 𝑋, the map

htpy-eq-cocone ∶ (𝑐 = 𝑐′) ≃ (𝑐 ∼ 𝑐′),

which sends refl to cocone-refl-htpy, is an equivalence.

The proof is a prototypical application of the fundamental theorem of iden-
tity types and the structure identity principle. We only write this one out for
demonstration, as other straightforward proofs of characterizations of identity
types are omitted from the thesis.

Proof. We use Theorem 1.0.16 to prove that it is an equivalence, so it suffices to
show that the type of cocones 𝑐′ such that 𝑐∼𝑐′ is contractible. Since 𝑐∼𝑐′ is a Σ
type, we invoke the structure identity principle (Theorem 1.0.19), which leaves
us to show that the type

Σ(𝑖′ ∶ 𝐴 → 𝑋). (𝑖 ∼ 𝑖′)

15

is contractible to some point (𝑖′, 𝐿), which by function extensionality (Theo-
rem 1.0.12) it is at (𝑖, refl-htpy), and then that the type

Σ (𝑗′ ∶ 𝐵 → 𝑋)(𝐻′ ∶ 𝑖 ∘ 𝑓 ∼ 𝑗′ ∘ 𝑔).
Σ (𝐾𝐵 ∶ 𝑗 ∼ 𝑗′). (𝐻 •ℎ 𝐾𝐵 ⋅𝑟 𝑔) ∼ (refl-htpy •ℎ𝐻′)

is contractible.
We use the structure identity principle again, so the new goal is to show that

Σ(𝑗′ ∶ 𝐵 → 𝑋). (𝑗 ∼ 𝑗′)

is contractible, which it is at (𝑗, refl-htpy), and that the type

Σ(𝐻′ ∶ 𝑖 ∘ 𝑓 ∼ 𝑗 ∘ 𝑔). (𝐻 •ℎ refl-htpy) ∼ 𝐻′

is contractible. And it is contractible once again at (𝐻•ℎrefl-htpy, refl-htpy).

Lemma 2.1.9. Given a span diagram 𝒮 ≐ (𝑓, 𝑔), its pushout cocone 𝑐 ≐ (𝑖, 𝑗, 𝐻) on
𝑋, and a cocone 𝑐′ ≐ (𝑖′, 𝑗′, 𝐻′) ∶ cocone(𝒮, 𝑌), there is a unique map ℎ ∶ 𝑋 → 𝑌
equipped with the homotopies

𝐾𝐴 ∶ ℎ ∘ 𝑖 ∼ 𝑖′

𝐾𝐵 ∶ ℎ ∘ 𝑗 ∼ 𝑗′

and the coherence 𝛼 witnessing that the following square of homotopies commutes

ℎ ∘ 𝑖 ∘ 𝑓 𝑖′ ∘ 𝑓

ℎ ∘ 𝑗 ∘ 𝑔 𝑗′ ∘ 𝑔.

𝐾𝐴⋅𝑟𝑓

ℎ⋅𝑙𝐻 𝐻′

𝐾𝐵⋅𝑟𝑔

Proof. The data claimed to be unique is an element of the type

Σ(ℎ ∶ 𝑋 → 𝑌). (cocone-map
𝑐
(ℎ) ∼ 𝑐′),

which is equivalent to the type of fibers of cocone-map
𝑐
at 𝑐′, by Lemma 2.1.8.

Since cocone-map
𝑐
is an equivalence by assumption, it has contractible fibers

by Lemma 1.0.9.

The universal property characterizes simple maps out of the colimit. In de-
pendent type theory, we can also ask about characterizations of dependent maps
out of the colimit. To that end we introduce dependent cocones and the depen-
dent universal property.

Definition 2.1.10. Consider a cocone 𝑐 ≐ (𝑖, 𝑗, 𝐻) ∶ cocone(𝒮, 𝑋) and a type
family 𝑃 ∶ 𝑋 → 𝒰. A dependent cocone over 𝑐 on 𝑃 is a triple (𝑖′, 𝑗′, 𝐻′),
where 𝑖′ ∶ (𝑎 ∶ 𝐴) → 𝑃(𝑖𝑎) and 𝑗′ ∶ (𝑏 ∶ 𝐵) → 𝑃(𝑗𝑏) are dependent maps over 𝑖
and 𝑗, respectively, and 𝐻 is a family of identifications

𝐻 ∶ (𝑠 ∶ 𝑆) → tr𝑃(𝐻𝑠)(𝑖′(𝑓𝑠)) = 𝑗′(𝑔𝑠).

We write dep-cocone(𝑐, 𝑃) for the type of dependent cocones over 𝑐 on 𝑃.

16

Construction 2.1.11. Given a cocone 𝑐≐(𝑖, 𝑗, 𝐻) ∶ cocone(𝒮, 𝑋) and a type fam-
ily 𝑃 ∶ 𝑋 → 𝒰, define the map

dep-cocone-map𝑃
𝑐

∶ ((𝑥 ∶ 𝑋) → 𝑃(𝑥)) → dep-cocone(𝑐, 𝑃)

which sends ℎ to (ℎ ∘ 𝑖, ℎ ∘ 𝑗, 𝜆𝑠 → apd
ℎ
(𝐻𝑠)).

We may omit the indices 𝑐 or 𝑃 if they are clear from context.

Definition 2.1.12. A cocone 𝑐 ∶ cocone(𝒮, 𝑋) satisfies the dependent universal
property of pushouts if for all 𝑃 ∶ 𝑋 → 𝒰, the map dep-cocone-map𝑃

𝑐
is an

equivalence.

Note that the dependent universal property is not a property of dependent
cocones, but rather a property of cocones and their extensions by dependent
functions.

Definition 2.1.13. Given a span diagram 𝒮 ≐ (𝑓, 𝑔), a cocone 𝑐 ∶ cocone(𝒮, 𝑋)
and two dependent cocones 𝑑 ≐ (𝑖, 𝑗, 𝐿) and 𝑑′ ≐ (𝑖′, 𝑗′, 𝐿′) on 𝑃, the type of
homotopies between 𝑑 and 𝑑′, denoted 𝑑∼𝑑′, is the type of triples (𝐾𝐴, 𝐾𝐵, 𝛼),
where 𝐾𝐴 and 𝐾𝐵 are homotopies

𝐾𝐴 ∶ 𝑖 ∼ 𝑖′

𝐾𝐵 ∶ 𝑗 ∼ 𝑗′

and𝛼 is a coherencewitnessing that the following square of identifications com-
mutes for every 𝑠 ∶ 𝑆

tr𝑃(𝐻𝑠)(𝑖(𝑓𝑠)) tr𝑃(𝐻𝑠)(𝑖′(𝑓𝑠))

𝑗(𝑔𝑠) 𝑗′(𝑔𝑠),

aptr𝑃(𝐻𝑠)(𝐾𝐴(𝑓𝑠))

𝐿(𝑠) 𝐿′(𝑠)

𝐾𝐵(𝑔𝑠)

where 𝐻 is the coherence of 𝑐.

Lemma 2.1.14. For every pair of dependent cocones 𝑑, 𝑑′ ∶ dep-cocone(𝑐, 𝑃), there
is an equivalence

htpy-eq-dep-cocone ∶ (𝑑 = 𝑑′) ≃ (𝑑 ∼ 𝑑′).

Proof. Using the structure identity principle.

Lemma 2.1.15. Given a span diagram 𝒮 ≐ (𝑓, 𝑔), its pushout cocone 𝑐 ≐ (𝑖, 𝑗, 𝐻)
on 𝑋, and a dependent cocone 𝑑 ≐ (𝑖′, 𝑗′, 𝐻′) ∶ dep-cocone(𝑐, 𝑃), there is a unique
dependent map ℎ ∶ (𝑥 ∶ 𝑋) → 𝑃(𝑥) equipped homotopies

𝐾𝐴 ∶ ℎ ∘ 𝑖 ∼ 𝑖′

𝐾𝐵 ∶ ℎ ∘ 𝑗 ∼ 𝑗′

and a coherence 𝛼 witnessing that the following square of identifications commutes for
all 𝑠 ∶ 𝑆

17

tr𝑃(𝐻𝑠)(ℎ(𝑖(𝑓𝑠))) tr𝑃(𝐻𝑠)(𝑖′(𝑓𝑠))

ℎ(𝑗(𝑔𝑠)) 𝑗′(𝑔𝑠).

aptr𝑃(𝐻𝑠)(𝐾𝐴(𝑓𝑠))

apdℎ(𝐻𝑠) 𝐻′(𝑠)

𝐾𝐵(𝑔𝑠)

Proof. The type is equivalent to the contractible fibers of dep-cocone-map𝑃
𝑐
.

We do not introduce a new name for cocones satisfying the dependent uni-
versal property, because the two properties turn out to be equivalent. The proof
relies on the pullbackproperty and thedependent pullback property of pushouts,
which relate pushouts and pullbacks of function types. As this thesis does not
discuss pullbacks, we defer the proof to Rijke [14, Theorem 25.1.4].
Theorem 2.1.16. A cocone 𝑐 ∶ cocone(𝒮, 𝑋) satisfies the universal property of pushouts
if and only if it satisfies the dependent universal property of pushouts.
Proof. There is a chain of logical equivalences

𝑐 satisfies the universal property of pushouts
↔ 𝑐 satisfies the pullback property of pushouts
↔ 𝑐 satisfies the dependent pullback property of pushouts
↔ 𝑐 satisfies the dependent universal property of pushouts.

Remark 2.1.17. This equivalence of a non-dependent and dependent universal
property is a more general phenomenon. In Homotopy Type Theory, there are
often multiple ways of describing universal properties. These expressions usu-
ally involve a base sort of objects and dependent objects, which can be equipped
with some structure functorial in an appropriate notion ofmaps and dependent
maps.

The functorial action

fmap ∶ (𝑋 → 𝑌) → structure(𝑋) → structure(𝑌)

can have its arguments rearranged so that for every structured object (𝑋, 𝑠) and
a plain object 𝑌, we get an “evaluation” map

ev-map𝑌
(𝑋,𝑠)

∶ (𝑋 → 𝑌) → structure(𝑌).

In the dependent case, we get a map

dep-ev-map𝑃
(𝑋,𝑠)

∶ ((𝑥 ∶ 𝑋) → 𝑃(𝑥)) → dep-structure((𝑋, 𝑠), 𝑃).

When talking about pushouts, we take the base objects to be types, depen-
dent objects to be type families, and maps and dependent maps to be ordinary
functions and dependent functions. The functorial structure on a type 𝑋 is the
structure of a cocone on 𝑋 under a fixed span diagram 𝒮, and the dependent
structure on a type family 𝑃 ∶ 𝑋 → 𝒰 over a cocone 𝑐 on 𝑋 is the structure
of a dependent cocone on 𝑃 over 𝑐. The evaluation maps are cocone-map and
dep-cocone-map, respectively.

With these general definitions in place, consider a structured object (𝑋, 𝑠);
we may ask for the following properties to be satisfied:

18

• Universal property: For every object 𝑌, ev-map𝑌
(𝑋,𝑠)

is an equivalence.

• Dependent universal property: For every dependent object 𝑃,
dep-ev-map𝑃

(𝑋,𝑠)
is an equivalence.

• Recursion principle and uniqueness: For every object 𝑌, ev-map𝑌
(𝑋,𝑠)

has
a unique section.

• Induction principle: For every dependent object 𝑃, dep-ev-map𝑃
(𝑋,𝑠)

has a
section.

The universal properties correspond to a notion of initiality: the evaluation
map is an equivalence if and only if it has contractible fibers, i.e. for all struc-
tured objects (𝑋, 𝑠) and (𝑌 , 𝑡), there is a unique map ℎ ∶ 𝑋 → 𝑌 such that
ev-map𝑌

(𝑋,𝑠)
ℎ = 𝑡. The condition asks for ℎ to preserve the structure. In other

words, the universal property says that (𝑋, 𝑠) is the initial object in a hypothet-
ical “category” of structured objects and homomorphisms.

It was first shown by Awodey, Gambino and Sojakova [3] that the four prop-
erties are equivalent for a class of examples, where we have objects, type fam-
ilies, ordinary functions, dependent functions, and the (dependent) structures
are (fibered) algebras for a polynomial functor. The result was later extended
by Sojakova [16] to include (fibered) algebras for W-suspensions, a higher in-
ductive analogue of W-types. The structure of a (dependent) cocone can be
expressed as a (fibered) algebra of a specific W-suspension, so this result is ap-
plicable to Theorem 2.1.16, but it has not been formalized in the library.

We will rely on informal understanding of this principle when discussing
options for formalization of a universal property of the identity types of pushouts
in section 2.4.

2.2 Descent property
The study of type theoretic descent describes how type families over a colimit
and related concepts, such as fiberwisemaps or sections, arise as local datawith
gluing conditions. It has been studied to some extent by Rijke in [12] and [14].

The universal property of pushouts characterizes maps out of a pushout to
any type in any universe, so in particular maps where the codomain itself is a
universe: a type family 𝑃 ∶ 𝑋 → 𝒰 corresponds to a cocone (𝑃𝐴, 𝑃𝐵, 𝐻) where
𝑃𝐴 ∶ 𝐴 → 𝒰, 𝑃𝐵 ∶ 𝐵 → 𝒰 are type families, and 𝐻 is a homotopy in the
universe 𝐻 ∶ (𝑠 ∶ 𝑆) → 𝑃𝐴(𝑓𝑠) = 𝑃𝐵(𝑔𝑠). Since identifications in universes
are characterized by equivalences via the univalence axiom, we arrive at the
definition of descent data:

Definition 2.2.1. Given a span diagram 𝒮 ∶= (𝑓, 𝑔), we call descent data over 𝒮
a triple (𝑃𝐴, 𝑃𝐵, 𝑃𝑆) consisting of type families

𝑃𝐴 ∶ 𝐴 → 𝒰
𝑃𝐵 ∶ 𝐵 → 𝒰

19

and a fiberwise equivalence

𝑃𝑆 ∶ (𝑠 ∶ 𝑆) → 𝑃𝐴(𝑓𝑠) ≃ 𝑃𝐵(𝑔𝑠).

We use the notation DD(𝒮) for the type of descent data over a span diagram
𝒮.

It may not be immediately clear why “descent data” is an appropriate name
for this concept, because there is no apparent downward motion. Traditionally,
descent is studied in the context of a collection of objects 𝑋𝑖 covering a single
object 𝑋, and local structure on the individual 𝑋𝑖’s descending onto 𝑋, collect-
ing into a global structure, given that the pieces are appropriately compatible
on any “overlaps”. A pushout 𝑋 of 𝒮 is covered by 𝐴 and 𝐵, and the overlaps
are encoded in 𝑓 and 𝑔. Structure on 𝐴 and 𝐵, expressed as type families 𝑃𝐴 and
𝑃𝐵, “descends” to a structure on 𝑋 (a type family over 𝑋). Two elements “over-
lap” in 𝑋 if there is an identification between them coming from 𝑆, and the
gluing/compatibility condition exactly requires the local structure of 𝑃𝐴 and
𝑃𝐵 to agree on such elements, i.e. asks for an equivalence 𝑃𝐴(𝑓𝑠) ≃ 𝑃𝐵(𝑔𝑠).

The first task is to establish an equivalence between type families over a
pushout and descent data over its defining span. A map from type families
to descent data is easy enough to construct:

Construction 2.2.2. Given a cocone 𝑐 ≐ (𝑖, 𝑗, 𝐻) on 𝑋, construct a map

dd-fam𝑐 ∶ (𝑋 → 𝒰) → DD(𝒮)

which sends a type family 𝑃 ∶ 𝑋 → 𝒰 to the descent data (𝑃𝐴, 𝑃𝐵, 𝑃𝑆) obtained
by precomposing

𝑃𝐴 ∶= (𝜆𝑎 → 𝑃(𝑖𝑎)) ∶ 𝐴 → 𝒰
𝑃𝐵 ∶= (𝜆𝑏 → 𝑃(𝑗𝑏)) ∶ 𝐵 → 𝒰

and transporting in 𝑃

𝑃𝑆 ∶= (𝜆𝑠 → tr𝑃(𝐻𝑠)) ∶ (𝑠 ∶ 𝑆) → 𝑃(𝑖(𝑓𝑠)) ≃ 𝑃(𝑗(𝑔𝑠)).

Note that tr𝑃(𝐻𝑠) is an equivalence by Lemma 1.0.7.

To show that dd-fam𝑐 is an equivalence, we employ a common technique
for proving equivalences: construct a commuting diagram involvingdd-fam𝑐 in
which all othermaps are equivalences. By repeated applications of Lemma1.0.8,
it follows that dd-fam𝑐 is an equivalence.

Theorem 2.2.3 (Descent property). Consider a span diagram 𝒮 ∶= (𝑓, 𝑔) and its
pushout cocone 𝑐 on 𝑋. Then the map dd-fam𝑐 is an equivalence (𝑋 → 𝒰) ≃ DD(𝒮).

Proof. There is a triangle of maps

(𝑋 → 𝒰) cocone(𝒮, 𝒰)

DD(𝒮).

cocone-map𝑐
≃

dd-fam𝑐 tot(tot(𝜆𝑠→equiv-eq))
≃

20

The topmap is an equivalence by assumption, since 𝑐 is a pushout. The right
map is an equivalence, because the map tot(ℎ) is an equivalence if and only if
ℎ is a fiberwise equivalence, and equiv-eq is an equivalence by the univalence
axiom (Axiom 1.0.10). By the 3-for-2 property of equivalences (Lemma 1.0.8), it
suffices to show that the triangle commutes to prove that dd-fam𝑐 is an equiv-
alence.

By chasing a type family𝑃 along the diagram,we see thatwe need to provide
an identification

(𝑃 ∘ 𝑖, 𝑃 ∘ 𝑗, 𝜆𝑠 → tr𝑃(𝐻𝑠)) = (𝑃 ∘ 𝑖, 𝑃 ∘ 𝑗, 𝜆𝑠 → equiv-eq(ap
𝑃

(𝐻𝑠))).

The first two components are identical. To identify the third component, we
invoke function extensionality; then it suffices to prove that for all 𝑠 ∶ 𝑆, there is
an identification of equivalences

tr𝑃(𝐻𝑠) = equiv-eq(ap
𝑃

(𝐻𝑠)),

which is always the case by Lemma 1.0.11 applied to the identification
𝐻𝑠 ∶ 𝑖(𝑓𝑠) = 𝑗(𝑔𝑠).

A corollary of dd-fam𝑐 being an equivalence is that it has contractible fibers
by Lemma 1.0.9, i.e. for any descent data (𝑃𝐴, 𝑃𝐵, 𝑃𝑆) there is a unique type
family 𝑃 such that dd-fam𝑐(𝑃) = (𝑃𝐴, 𝑃𝐵, 𝑃𝑆). We proceed to work on charac-
terization of identifications of descent data to get a more pleasant statement of
this theorem.

Definition 2.2.4. Consider a span diagram 𝒮 ≐ (𝑓, 𝑔), and two descent data
(𝑃𝐴, 𝑃𝐵, 𝑃𝑆) and (𝑄𝐴, 𝑄𝐵, 𝑄𝑆) over it. A morphism of descent data between
them is a pair of fiberwise maps

ℎ𝐴 ∶ (𝑎 ∶ 𝐴) → 𝑃𝐴(𝑎) → 𝑄𝐴(𝑎)
ℎ𝐵 ∶ (𝑏 ∶ 𝐵) → 𝑃𝐵(𝑏) → 𝑄𝐵(𝑏)

equipped with a family of homotopies ℎ𝑆 indexed by 𝑠 ∶ 𝑆 making the square

𝑃𝐴(𝑓𝑠) 𝑄𝐴(𝑓𝑠)

𝑃𝐵(𝑔𝑠) 𝑄𝐵(𝑔𝑠)

ℎ𝐴(𝑓𝑠)

𝑃𝑆𝑠 𝑄𝑆𝑠

ℎ𝐵(𝑔𝑠)

commute.
We write (ℎ𝐴, ℎ𝐵, ℎ𝑆) ∶ (𝑃𝐴, 𝑃𝐵, 𝑃𝑆) → (𝑄𝐴, 𝑄𝐵, 𝑄𝑆).

Analogously, we define equivalences of descent data.

Definition 2.2.5. Consider a span diagram 𝒮 ≐ (𝑓, 𝑔), and two descent data
(𝑃𝐴, 𝑃𝐵, 𝑃𝑆) and (𝑄𝐴, 𝑄𝐵, 𝑄𝑆) over it. An equivalence of descent data between
them is a pair of fiberwise equivalences

𝑒𝐴 ∶ (𝑎 ∶ 𝐴) → 𝑃𝐴(𝑎) ≃ 𝑄𝐴(𝑎)
𝑒𝐵 ∶ (𝑏 ∶ 𝐵) → 𝑃𝐵(𝑏) ≃ 𝑄𝐵(𝑏)

equipped with a family of homotopies 𝑒𝑆 indexed by 𝑠 ∶ 𝑆 making the square

21

𝑃𝐴(𝑓𝑠) 𝑄𝐴(𝑓𝑠)

𝑃𝐵(𝑔𝑠) 𝑄𝐵(𝑔𝑠)

𝑒𝐴(𝑓𝑠)

𝑃𝑆𝑠 𝑄𝑆𝑠

𝑒𝐵(𝑔𝑠)

commute.
We write (𝑒𝐴, 𝑒𝐵, 𝑒𝑆) ∶ (𝑃𝐴, 𝑃𝐵, 𝑃𝑆) ≃ (𝑄𝐴, 𝑄𝐵, 𝑄𝑆).

Remark 2.2.6. Alternatively, one could define equivalences of descent data as
morphisms of descent data equipped with witnesses that the relevant maps
are equivalences. The two definitions of equivalences of descent data would
be equivalent, but the presented one can be used directly with the structure
identity principle.

Lemma 2.2.7. For any two descent data 𝑃 ′ ≐ (𝑃𝐴, 𝑃𝐵, 𝑃𝑆) and 𝑄′ ≐ (𝑄𝐴, 𝑄𝐵, 𝑄𝑆),
the map

equivDD-eq ∶ (𝑃 ′ = 𝑄′) → (𝑃 ′ ≃ 𝑄′),

defined by sending refl to the identity equivalence, is an equivalence.

Proof. Using the structure identity principle.

Theorem 2.2.8. Consider a span diagram 𝒮≐(𝑓, 𝑔) and a pushout cocone 𝑐≐(𝑖, 𝑗, 𝐻)
on 𝑋. Then for any descent data (𝑃𝐴, 𝑃𝐵, 𝑃𝑆) over 𝒮, the type of type families
𝑃 ∶ 𝑋 → 𝒰 equipped with an equivalence of descent data dd-fam𝑐(𝑃) ≃ (𝑃𝐴, 𝑃𝐵, 𝑃𝑆)
is contractible. In other words, there is a unique quadruple (𝑃 , 𝑒𝐴, 𝑒𝐵, 𝑒𝑆) consisting
of a type family 𝑃 ∶ 𝑋 → 𝒰, equivalences

𝑒𝐴 ∶ (𝑎 ∶ 𝐴) → 𝑃(𝑖𝑎) ≃ 𝑃𝐴(𝑎)
𝑒𝐵 ∶ (𝑏 ∶ 𝐵) → 𝑃(𝑗𝑏) ≃ 𝑃𝐵(𝑏),

and a family of commuting squares 𝑒𝑠

𝑃(𝑖(𝑓𝑠)) 𝑃𝐴(𝑓𝑠)

𝑃 (𝑗(𝑔𝑠)) 𝑃𝐵(𝑔𝑠)

𝑒𝐴(𝑓𝑠)

tr𝑃(𝐻𝑠) 𝑃𝑆𝑠

𝑒𝐵(𝑔𝑠)

indexed by 𝑠 ∶ 𝑆.

Proof. Equivalences of descent data characterize identifications of descent data,
so the type of type families 𝑃 ∶ 𝑋 → 𝒰 equipped with an equivalence
dd-fam𝑐(𝑃) ≃ (𝑃𝐴, 𝑃𝐵, 𝑃𝑆) is equivalent to the type of type families 𝑃 ∶ 𝑋 → 𝒰
with an identification dd-fam𝑐(𝑃) = (𝑃𝐴, 𝑃𝐵, 𝑃𝑆). Since contractibility is pre-
served by equivalences, it suffices to show that the latter type is contractible.
But that is exactly the type of fibers of dd-fam𝑐 over (𝑃𝐴, 𝑃𝐵, 𝑃𝑆), which are
contractible on account of dd-fam𝑐 being an equivalence.

When relating concepts from the world of type families with concepts from
the world of descent data, it can be beneficial to be parametric over the data of
a type family 𝑃 and its “corresponding descent data”, meaning some descent

22

data (𝑃𝐴, 𝑃𝐵, 𝑃𝑆) which is equivalent to the descent data induced by 𝑃. Of
course, by the descent theorem this data is completely determined by either 𝑃
or (𝑃𝐴, 𝑃𝐵, 𝑃𝑆) up to identification, but this level of generality allows users to
provide their own equivalences for potentially better computational properties.
We introduce a shorthand notation.
Definition 2.2.9. Given a span diagram 𝒮 and a cocone 𝑐 on 𝑋, we define the
type of families with descent data to be the type of triples (𝑃 , 𝑃 ′, 𝑒) consisting
of a type family 𝑃 ∶ 𝑋 → 𝒰, descent data 𝑃 ′ ∶ DD(𝒮), and an equivalence of
descent data 𝑒 ∶ dd-fam𝑐(𝑃) ≃ 𝑃 ′.

We write 𝑒 ∶ 𝑃 ≈ 𝑃 ′ for a family 𝑃 with descent data 𝑃 ′ related by an
equivalence 𝑒. We also say that 𝑃 is characterized by 𝑃 ′.
Remark 2.2.10. Note that we do not require 𝑐 to be a pushout. In subsequent
development, and in the formalization, we often parameterize constructions by
a family with descent data, which incentivizes general constructions applicable
to non-pushout cocones.
Remark 2.2.11. The concept of a family with descent data has a direction: the
equivalence relates dd-fam𝑐(𝑃) on the left with 𝑃 ′ on the right. It lends itself
well to characterizations of concrete type families, where 𝑃 has a specific shape,
and we want to recover the shape of corresponding descent data by computing
𝑃(𝑖𝑎)’s and 𝑃(𝑗𝑏)’s. However there are applications where the converse direc-
tion is more suitable. In those cases we write 𝑒 ∶ 𝑃 ′ ≈ 𝑃 for descent data 𝑃 ′, a
type family 𝑃, and an equivalence of descent data 𝑒 ∶ 𝑃 ′ ≃ dd-fam(𝑃).

As a first example of a family with descent data, we characterize the type
family of based identity types.
Construction 2.2.12. Given a span diagram 𝒮 ≐ (𝑓, 𝑔), a cocone (𝑖, 𝑗, 𝐻) on 𝑋
and a point 𝑥0 ∶ 𝑋, construct the descent data (𝐼𝐴, 𝐼𝐵, 𝐼𝑆) as

𝐼𝐴 ∶= (𝜆𝑎 → (𝑥 = 𝑖𝑎)) ∶ 𝐴 → 𝒰
𝐼𝐵 ∶= (𝜆𝑏 → (𝑥 = 𝑗𝑏)) ∶ 𝐵 → 𝒰
𝐼𝑆 ∶= (𝜆𝑠, 𝑝 → 𝑝 • (𝐻𝑠)) ∶ (𝑠 ∶ 𝑆) → 𝐼𝐴(𝑓𝑠) ≃ 𝐼𝐵(𝑔𝑠).

The concatenation operation is an equivalence by Lemma 1.0.6.
Remark 2.2.13. Note that the basepoint𝑥0 is notmentioned in the notation (𝐼𝐴, 𝐼𝐵, 𝐼𝑆).
Whenever we use this notation, the basepoint should be clear from context.
Lemma 2.2.14. Given a cocone and a basepoint 𝑥0 ∶ 𝑋 as above, the type family
Id(𝑥0) ∶ 𝑋 → 𝒰 is characterized by the descent data (𝐼𝐴, 𝐼𝐵, 𝐼𝑆). Explicitly, there
are equivalences

𝑒𝐴 ∶ (𝑎 ∶ 𝐴) → (𝑥0 = 𝑖𝑎) ≃ 𝐼𝐴(𝑎)
𝑒𝐵 ∶ (𝑏 ∶ 𝐵) → (𝑥0 = 𝑗𝑏) ≃ 𝐼𝐵(𝑏)

and a family of commuting squares 𝑒𝑆

(𝑥0 = 𝑖(𝑓𝑠)) 𝐼𝐴(𝑓𝑠)

(𝑥0 = 𝑗(𝑔𝑠)) 𝐼𝐵(𝑔𝑠).

𝑒𝐴(𝑓𝑠)

trId(𝑥0)(𝐻𝑠) 𝐼𝑆𝑠

𝑒𝐵(𝑔𝑠)

23

Proof. By definition, 𝐼𝐴(𝑎) ≐ (𝑥0 = 𝑖𝑎) and 𝐼𝐵(𝑏) ≐ (𝑥0 = 𝑗𝑏), so we may
choose the identity equivalence for both 𝑒𝐴 and 𝑒𝐵. Then the coherence datum
amounts to showing that trId(𝑥0)(𝐻𝑠, 𝑝) = 𝑝 • (𝐻𝑠), which is Lemma 1.0.3.

For any given type family 𝑃 ∶ 𝑋 → 𝒰, we can talk about its sections, elements
of the type (𝑥 ∶ 𝑋) → 𝑃(𝑥). We define an analogous concept of sections of descent
data, and show that indeed they correspond to sections of type families over
pushouts.

Definition 2.2.15. Given a span diagram 𝒮 and descent data (𝑃𝐴, 𝑃𝐵, 𝑃𝑆) over
it, a section of (𝑃𝐴, 𝑃𝐵, 𝑃𝑆) is a triple (𝑡𝐴, 𝑡𝐵, 𝑡𝑆) consisting of sections

𝑡𝐴 ∶ (𝑎 ∶ 𝐴) → 𝑃𝐴(𝑎)
𝑡𝐵 ∶ (𝑏 ∶ 𝐵) → 𝑃𝐵(𝑏)

and a coherence

𝑡𝑆 ∶ (𝑠 ∶ 𝑆) → 𝑃𝑆(𝑠, 𝑡𝐴(𝑓𝑠)) = 𝑡𝐵(𝑔𝑠).

We write sect(𝑃𝐴, 𝑃𝐵, 𝑃𝑆) for the type of sections of (𝑃𝐴, 𝑃𝐵, 𝑃𝑆).

Construction 2.2.16. Given a span diagram 𝒮 ≐ (𝑓, 𝑔), a cocone 𝑐 ≐ (𝑖, 𝑗, 𝐻) on
𝑋, and a family with descent data 𝑒 ∶ 𝑃 ≈ (𝑃𝐴, 𝑃𝐵, 𝑃𝑆), construct a map

sect-sect𝑐 ∶ ((𝑥 ∶ 𝑋) → 𝑃(𝑥)) → sect(𝑃𝐴, 𝑃𝐵, 𝑃𝑆)

by assigning to a dependent function ℎ the section

(𝜆𝑎 → 𝑒𝐴(ℎ(𝑖𝑎))) ∶ (𝑎 ∶ 𝐴) → 𝑃𝐴(𝑎)
(𝜆𝑏 → 𝑒𝐵(ℎ(𝑗𝑏))) ∶ (𝑏 ∶ 𝐵) → 𝑃𝐵(𝑏)
(𝜆𝑠 → (𝑒𝑆(ℎ(𝑖(𝑓𝑠))))−1 • ap

𝑒𝐵
(apd

ℎ
(𝐻𝑠))) ∶ (𝑠 ∶ 𝑆) →

𝑃𝑆(𝑠, 𝑒𝐴(ℎ(𝑖(𝑓𝑠)))) = 𝑒𝐵(ℎ(𝑗(𝑔𝑠))).

Lemma 2.2.17. Consider a span diagram 𝒮, a pushout cocone 𝑐 on 𝑋 and a family with
descent data 𝑃 ≈ (𝑃𝐴, 𝑃𝐵, 𝑃𝑆). Then the map sect-sect𝑐 is an equivalence.

Proof. The map factors through the dependent cocone map as

((𝑥 ∶ 𝑋) → 𝑃(𝑥)) dep-cocone(𝑐, 𝑃)

sect(𝑃𝐴, 𝑃𝐵, 𝑃𝑆),

dep-cocone-map𝑐
≃

sect-sect𝑐 ≃

where the right map takes (𝑖′, 𝑗′, 𝐻′) to

(𝜆𝑎 → 𝑒𝐴(𝑖′𝑎)) ∶ (𝑎 ∶ 𝐴) → 𝑃𝐴(𝑎)
(𝜆𝑏 → 𝑒𝐵(𝑗′𝑏)) ∶ (𝑏 ∶ 𝐵) → 𝑃𝐵(𝑏)
(𝜆𝑠 → (𝑒𝑆(𝑖′(𝑓𝑠)))−1 • ap

𝑒𝐵
(𝐻′𝑠)) ∶ (𝑠 ∶ 𝑆) →

𝑃𝑆(𝑠, 𝑒𝐴(𝑖′(𝑓𝑠))) = 𝑒𝐵(𝑗′(𝑔𝑠)).

24

The right map is an equivalence, because its action on the first two compo-
nents is postcomposition by a fiberwise equivalence, which is an equivalence,
and its action on the third component is a fiberwise application of ap

𝑒𝐵
, which

is an equivalence, and concatenation with an identification, which is an equiv-
alence.

The triangle commutes by refl-htpy. By the 3-for-2 property of equivalences,
it follows that sect-sect𝑐 is an equivalence.

Equipped with the tools for computing data over pushouts by gluing to-
gether data over its components, we continue by computing fiberwise maps
and equivalences over pushouts. We first characterize type families of fiber-
wise maps, i.e. families with fibers of the shape 𝑃(𝑥) → 𝑄(𝑥).

Remark 2.2.18. It is important to differentiate between families of function types,
i.e. a type family that to every 𝑥 ∶ 𝑋 assigns the type 𝑃(𝑥) → 𝑄(𝑥), and families
of functions, i.e. a family that to every 𝑥 ∶ 𝑋 assigns a function from 𝑃(𝑥) to 𝑄(𝑥).
Descent data plays the role of a family of types, so it makes sense to talk about
“descent data corresponding to a family of function types”, but it does notmake
sense to talk about “descent data corresponding to a family of functions”. The
kind of objects that corresponds to families of functions are the sections of the
descent data of a family of function types.

Lemma 2.2.19. Given a span diagram 𝒮≐(𝑓, 𝑔), a cocone 𝑐 on 𝑋 and two families with
descent data 𝑒𝑃 ∶ 𝑃 ≈ (𝑃𝐴, 𝑃𝐵, 𝑃𝑆) and 𝑒𝑄 ∶ 𝑄 ≈ (𝑄𝐴, 𝑄𝐵, 𝑄𝑆), the type family

(𝜆𝑥 → (𝑃(𝑥) → 𝑄(𝑥))) ∶ 𝑋 → 𝒰

is characterized by the descent data

(𝜆𝑎 → (𝑃𝐴(𝑎) → 𝑄𝐴(𝑎))) ∶ 𝐴 → 𝒰
(𝜆𝑏 → (𝑃𝐵(𝑏) → 𝑄𝐵(𝑏))) ∶ 𝐵 → 𝒰
(𝜆𝑠, ℎ → 𝑄𝑆(𝑠) ∘ ℎ ∘ (𝑃𝑆(𝑠))−1) ∶ (𝑠 ∶ 𝑆) →

(𝑃𝐴(𝑓𝑠) → 𝑄𝐴(𝑓𝑠)) ≃ (𝑃𝐵(𝑔𝑠) → 𝑄𝐵(𝑔𝑠)).

Note that postcomposition and precomposition by an equivalence is an equivalence
of function types.

Proof. We need to provide equivalences

𝑒𝐴 ∶ (𝑎 ∶ 𝐴) → (𝑃(𝑖𝑎) → 𝑄(𝑖𝑎)) ≃ (𝑃𝐴(𝑎) → 𝑄𝐴(𝑎))
𝑒𝐵 ∶ (𝑏 ∶ 𝐵) → (𝑃(𝑗𝑏) → 𝑄(𝑗𝑏)) ≃ (𝑃𝐵(𝑏) → 𝑄𝐵(𝑏))

and a coherence 𝑒𝑆

(𝑃 (𝑖(𝑓𝑠)) → 𝑄(𝑖(𝑓𝑠))) (𝑃𝐴(𝑓𝑠) → 𝑄𝐴(𝑓𝑠))

(𝑃 (𝑗(𝑔𝑠)) → 𝑄(𝑗(𝑔𝑠))) (𝑃𝐵(𝑔𝑠) → 𝑄𝐵(𝑔𝑠)).

𝑒𝐴(𝑓𝑠)

tr(𝜆𝑥→(𝑃(𝑥)→𝑄(𝑥)))(𝐻𝑠) 𝑄𝑆(𝑠)∘ − ∘(𝑃𝑆(𝑠))−1

𝑒𝐵(𝑔𝑠)

25

Define the equivalences by

𝑒𝐴(𝑎, ℎ) ∶= 𝑒𝑄
𝐴(𝑎) ∘ ℎ ∘ (𝑒𝑃

𝐴(𝑎))−1

𝑒𝐵(𝑏, ℎ) ∶= 𝑒𝑄
𝐵(𝑏) ∘ ℎ ∘ (𝑒𝑃

𝐵(𝑏))−1.

Transport in a type family of function types can be computed as composition
of transports in the involved families by Lemma 1.0.4, so the left map can be
replaced by tr𝑄(𝐻𝑠) ∘ − ∘ tr𝑃(𝐻𝑠)−1. Since we want to identify two functions,
we invoke function extensionality, and are left with the goal

𝑃𝐵(𝑔𝑠) 𝑃𝐴(𝑓𝑠)

𝑃 (𝑗(𝑔𝑠)) 𝑃 (𝑖(𝑓𝑠)) 𝑄(𝑖(𝑓𝑠)) 𝑄𝐴(𝑓𝑠)

𝑄(𝑗(𝑔𝑠)) 𝑄𝐵(𝑔𝑠)

(𝑃𝑆(𝑠))−1

(𝑒𝑃
𝐵(𝑔𝑠))−1 (𝑒𝑃

𝐴(𝑓𝑠))−1

tr𝑃(𝐻𝑠)−1
ℎ 𝑒𝑄

𝐴(𝑓𝑠)

tr𝑄(𝐻𝑠) 𝑄𝑆(𝑠)

𝑒𝑄
𝐵(𝑔𝑠)

for all ℎ ∶ 𝑃 (𝑖(𝑓𝑠)) → 𝑄(𝑖(𝑓𝑠)). The right square is exactly 𝑒𝑄
𝑆 (𝑠), and the left

square is 𝑒𝑃
𝑆(𝑠) mirrored vertically and horizontally.

Lemma 2.2.20. The type of sections of the descent data defined in Lemma 2.2.19 is
equivalent to morphisms (𝑃𝐴, 𝑃𝐵, 𝑃𝑆) → (𝑄𝐴, 𝑄𝐵, 𝑄𝑆).

Proof. The first two components of a section and a morphism are the same,
namely

ℎ𝐴 ∶ (𝑎 ∶ 𝐴) → 𝑃𝐴(𝑎) → 𝑄𝐴(𝑎)
ℎ𝐵 ∶ (𝑏 ∶ 𝐵) → 𝑃𝐵(𝑏) → 𝑄𝐵(𝑏).

It then suffices to give, for every 𝑠 ∶ 𝑆, an equivalence

((𝑄𝑆(𝑠) ∘ ℎ𝐴(𝑓𝑠) ∘ (𝑃𝑆(𝑠))−1) = ℎ𝐵(𝑔𝑠))
≃ ((ℎ𝐵(𝑔𝑠) ∘ 𝑃𝑆(𝑠)) ∼ (𝑄𝑆(𝑠) ∘ ℎ𝐴(𝑓𝑠))).

We obtain it by composing the following chain of equivalences:

((𝑄𝑆(𝑠) ∘ ℎ𝐴(𝑓𝑠) ∘ (𝑃𝑆(𝑠))−1) = ℎ𝐵(𝑔𝑠))
≃ ((𝑄𝑆(𝑠) ∘ ℎ𝐴(𝑓𝑠) ∘ (𝑃𝑆(𝑠))−1) ∼ ℎ𝐵(𝑔𝑠)) by function extensionality
≃ ((𝑄𝑆(𝑠) ∘ ℎ𝐴(𝑓𝑠)) ∼ (ℎ𝐵(𝑔𝑠) ∘ 𝑃𝑆(𝑠))) by transposition
≃ ((ℎ𝐵(𝑔𝑠) ∘ 𝑃𝑆(𝑠)) ∼ (𝑄𝑆(𝑠) ∘ ℎ𝐴(𝑓𝑠))) by inversion.

Theorem 2.2.21. Consider a span diagram 𝒮, a pushout cocone 𝑐≐(𝑖, 𝑗, 𝐻) on 𝑋, and
two families with descent data 𝑒𝑃 ∶ 𝑃 ≈ (𝑃𝐴, 𝑃𝐵, 𝑃𝑆) and 𝑒𝑄 ∶ 𝑄 ≈ (𝑄𝐴, 𝑄𝐵, 𝑄𝑆).
Then there is an equivalence

hom-map ∶ ((𝑥 ∶ 𝑋) → 𝑃(𝑥) → 𝑄(𝑥)) ≃ ((𝑃𝐴, 𝑃𝐵, 𝑃𝑆) → (𝑄𝐴, 𝑄𝐵, 𝑄𝑆)).

Additionally, the following diagrams commute for all ℎ ∶ (𝑥 ∶ 𝑋) → 𝑃(𝑥) → 𝑄(𝑥)

26

𝑃(𝑖𝑎) 𝑄(𝑖𝑎)

𝑃𝐴(𝑎) 𝑄𝐴(𝑎)

ℎ(𝑖𝑎)

𝑒𝑃
𝐴(𝑎) 𝑒𝑄

𝐴(𝑎)

hom-map(ℎ)𝐴(𝑎)

𝑃(𝑗𝑏) 𝑄(𝑗𝑏)

𝑃𝐵(𝑏) 𝑄𝐵(𝑏).

ℎ(𝑗𝑏)

𝑒𝑃
𝐵(𝑏) 𝑒𝑄

𝐵(𝑏)

hom-map(ℎ)𝐵(𝑏)

Proof. The type of fiberwise maps is by definition the type of sections of the
family 𝜆𝑥 → (𝑃(𝑥) → 𝑄(𝑥)), which is equivalent to the type of sections of
the descent data from Lemma 2.2.19 by Lemma 2.2.17. That type of sections is
equivalent to the type of morphisms of descent data by Lemma 2.2.20.

Computing the action of this composed equivalence on a fiberwise map
ℎ ∶ (𝑥 ∶ 𝑋) → 𝑃(𝑥) → 𝑄(𝑥), we get the judgmental equalities

hom-map(ℎ)𝐴 ≐ 𝜆𝑎 → 𝑒𝑄
𝐴(𝑎) ∘ ℎ(𝑖𝑎) ∘ (𝑒𝑃

𝐴(𝑎))−1

hom-map(ℎ)𝐵 ≐ 𝜆𝑏 → 𝑒𝑄
𝐵(𝑏) ∘ ℎ(𝑗𝑏) ∘ (𝑒𝑃

𝐵(𝑏))−1,

so by transposing 𝑒𝑃
𝐴(𝑎) and 𝑒𝑃

𝐵(𝑏), we get the desired computation rules.

Completely analogously, wemay characterize the type family of equivalence
types, and show that fiberwise equivalences correspond to equivalences of de-
scent data. We present the statements here without proof, however their for-
malization is available in the attached source code.

Lemma 2.2.22. Given a cocone 𝑐 on 𝑋 and two families with descent data 𝑒𝑃 ∶ 𝑃 ≈
(𝑃𝐴, 𝑃𝐵, 𝑃𝑆) and 𝑒𝑄 ∶ 𝑄 ≈ (𝑄𝐴, 𝑄𝐵, 𝑄𝑆), the type family

(𝜆𝑥 → (𝑃(𝑥) ≃ 𝑄(𝑥))) ∶ 𝑋 → 𝒰

is characterized by the descent data

(𝜆𝑎 → (𝑃𝐴(𝑎) ≃ 𝑄𝐴(𝑎))) ∶ 𝐴 → 𝒰
(𝜆𝑏 → (𝑃𝐵(𝑏) ≃ 𝑄𝐵(𝑏))) ∶ 𝐵 → 𝒰
(𝜆𝑠, ℎ → 𝑄𝑆(𝑠) ∘ ℎ ∘ (𝑃𝑆(𝑠))−1) ∶ (𝑠 ∶ 𝑆) →

(𝑃𝐴(𝑓𝑠) ≃ 𝑄𝐴(𝑓𝑠)) ≃ (𝑃𝐵(𝑔𝑠) ≃ 𝑄𝐵(𝑔𝑠)).

Theorem 2.2.23. Consider a span diagram 𝒮, a pushout cocone 𝑐≐(𝑖, 𝑗, 𝐻) on 𝑋, and
two families with descent data 𝑒𝑃 ∶ 𝑃 ≈ (𝑃𝐴, 𝑃𝐵, 𝑃𝑆) and 𝑒𝑄 ∶ 𝑄 ≈ (𝑄𝐴, 𝑄𝐵, 𝑄𝑆).
Then there is an equivalence

equivDD-equiv ∶ ((𝑥 ∶ 𝑋) → 𝑃(𝑥) ≃ 𝑄(𝑥)) ≃ ((𝑃𝐴, 𝑃𝐵, 𝑃𝑆) ≃ (𝑄𝐴, 𝑄𝐵, 𝑄𝑆)).

Additionally, the following diagrams commute for all 𝑒 ∶ (𝑥 ∶ 𝑋) → 𝑃(𝑥) ≃ 𝑄(𝑥)

𝑃(𝑖𝑎) 𝑄(𝑖𝑎)

𝑃𝐴(𝑎) 𝑄𝐴(𝑎)

𝑒(𝑖𝑎)

𝑒𝑃
𝐴(𝑎) 𝑒𝑄

𝐴(𝑎)

equivDD-equiv(𝑒)𝐴(𝑎)

𝑃(𝑗𝑏) 𝑄(𝑗𝑏)

𝑃𝐵(𝑏) 𝑄𝐵(𝑏).

𝑒(𝑗𝑏)

𝑒𝑃
𝐵(𝑏) 𝑒𝑄

𝐵(𝑏)

equivDD-equiv(𝑒)𝐵(𝑏)

27

Families Descent data
Objects 𝑃 ∶ 𝑋 → 𝒰 (𝑃𝐴, 𝑃𝐵, 𝑃𝑆)
Sections (𝑥 ∶ 𝑋) → 𝑃(𝑥) sect(𝑃𝐴, 𝑃𝐵, 𝑃𝑆)
Morphisms (𝑥 ∶ 𝑋) → 𝑃(𝑥) → 𝑄(𝑥) (𝑃𝐴, 𝑃𝐵, 𝑃𝑆) → (𝑄𝐴, 𝑄𝐵, 𝑄𝑆)
Equivalences (𝑥 ∶ 𝑋) → 𝑃(𝑥) ≃ 𝑄(𝑥) (𝑃𝐴, 𝑃𝐵, 𝑃𝑆) ≃ (𝑄𝐴, 𝑄𝐵, 𝑄𝑆)
Identity objects 𝜆𝑥 → (𝑥0 = 𝑥) (𝐼𝐴, 𝐼𝐵, 𝐼𝑆)
Identity induction Identity systems ???

Figure 2.1: Translation table between type families and descent data

The correspondence of concepts between the world of type families over
pushouts and the world of descent data is summarized in Figure 2.1. Since
we want to arrive at an alternative characterization of the identity descent data
(𝐼𝐴, 𝐼𝐵, 𝐼𝑆) via the zigzag construction, we chose to identify its universal prop-
erty. We can take inspiration from the various universal properties satisfied by
the family of identity types Id(𝑥0)∶=(𝜆𝑥 → (𝑥0 = 𝑥)). Some of those properties
arise from it being the initial pointed type family, in the sense of Remark 2.1.17.
As we will see, in this case the induction principle can be reduced to defining
a converse map; it will automatically be a section. It also corresponds to the
induction principle stated by Kraus and von Raumer [7].

However, the induction principle speaks about dependent type families of
the sort (𝑥 ∶ 𝑋) → (𝑝 ∶ 𝑃 (𝑥)) → 𝒰. Instead of building new infrastructure for
“dependent descent data”, we notice that by uncurrying, those dependent type
families are exactly the type families Σ𝑋𝑃 → 𝒰! This observation makes us
ask another question — to use descent, we need type families over a pushout;
by assumption, 𝑋 is a pushout, but here we require Σ𝑋𝑃 to be a pushouts as
well. The next section is dedicated to proving that indeed, the total space of a
family over a pushout is a pushout.

2.3 Flattening lemma
The flattening lemma for pushouts effectively states that pushouts commute
with dependent pair types — the total space of a type family over a pushout is
a pushout of total spaces of the corresponding descent data.

The presented proof is split into two parts. First we prove the statement
specifically for a type family and the descent data it induces, which reduces
the amount of data we need to make coherent. Then we relate the cocone for
descent data induced by the family to the cocone for arbitrary corresponding
descent data, via a commuting cube whose vertical maps are equivalences. We
do not write down the proof of the lemma that such cubes preserve pushouts,
since it factors through the dual statement for pullbacks, which is out of scope
of the thesis. Its formalization can be found in the attached code.

28

Lemma 2.3.1. Consider a commuting cube

𝐴′

𝐵′ 𝐴 𝐶′

𝐵 𝐷′ 𝐶

𝐷.

𝑓′
𝑒𝐴≃

𝑔′

𝑒𝐵 ≃

𝑓 𝑔

𝑗′

𝑒𝐶≃

𝑖

𝑖′

𝑒𝐷≃
𝑗

where the vertical maps are equivalences. Then the bottom square is a pushout square if
and only if the top square is a pushout square.

Construction 2.3.2. Given a spandiagram𝒮≐(𝑓, 𝑔) anddescent data (𝑃𝐴, 𝑃𝐵, 𝑃𝑆),
construct the total span diagram Σ𝒮

Σ𝐴𝑃𝐴 Σ𝑆(𝑃𝐴 ∘ 𝑓) Σ𝐵𝑃𝐵.
tot𝑓(id) tot𝑔(𝑃𝑆)

Construction 2.3.3. Given a span diagram 𝒮 ≐ (𝑓, 𝑔), a cocone 𝑐 ≐ (𝑖, 𝑗, 𝐻) on
𝑋, and a family with descent data (𝑒𝐴, 𝑒𝐵, 𝑒𝑆) ∶ (𝑃𝐴, 𝑃𝐵, 𝑃𝑆) ≈ 𝑃, construct the
total cocone Σ𝑐 under the total span diagram

Σ𝑆(𝑃𝐴 ∘ 𝑓) Σ𝐵𝑃𝐵

Σ𝐴𝑃𝐴 Σ𝑋𝑃,

tot𝑓(id)

tot𝑔(𝑃𝑆)

tot𝑗(𝑒𝐵)

tot𝑖(𝑒𝐴)

𝐻′

where the coherence 𝐻′ at 𝑠 ∶ 𝑆, 𝑝 ∶ 𝑃𝐴(𝑓𝑠) is given by

𝐻′
1 ∶= 𝐻(𝑠) ∶ 𝑖(𝑓𝑠) = 𝑗(𝑔𝑠)

𝐻′
2 ∶= 𝑒𝑆(𝑠, 𝑝)−1 ∶ tr𝑃(𝐻(𝑠), 𝑒𝐴(𝑠, 𝑝)) = 𝑒𝐵(𝑃𝑆(𝑠, 𝑝)),

implicitly using the fact that an identifications in Σ types consist of pairs of
identifications (Lemma 1.0.18).

Lemma 2.3.4. Given a pushout square (𝑖, 𝑗, 𝐻) on 𝑋 and a type family 𝑃 ∶ 𝑋 → 𝒰,
the total cocone of (𝑃 ∘ 𝑖, 𝑃 ∘ 𝑗, tr𝑃(𝐻)) ≈ 𝑃 is a pushout.

Proof. The goal is to prove that for any type 𝑌, the map

cocone-map
Σ𝑐

∶ (Σ𝑋𝑃 → 𝑌) → cocone(Σ𝑐, 𝑌)

is an equivalence. We achieve that by forming a commuting pentagon, in which
all other maps are equivalences:

29

(Σ𝑋𝑃 → 𝑌)

Σ(ℎ𝐴 ∶ Σ𝐴(𝑃 ∘ 𝑖) → 𝑌)
(ℎ𝐵 ∶ Σ𝐵(𝑃 ∘ 𝑗) → 𝑌).
((𝑠, 𝑝) ∶ Σ𝑆(𝑃 ∘ 𝑖 ∘ 𝑓)) →
ℎ𝐴(𝑓𝑠, 𝑝) = ℎ𝐵(𝑔𝑠, tr𝑃(𝐻𝑠, 𝑝))

(𝑥 ∶ 𝑋) → 𝑃(𝑥) → 𝑌

Σ(ℎ𝐴 ∶ (𝑎 ∶ 𝐴) → 𝑃(𝑖𝑎) → 𝑌)
(ℎ𝐵 ∶ (𝑏 ∶ 𝐵) → 𝑃(𝑗𝑏) → 𝑌).
(𝑠 ∶ 𝑆) →
tr(𝜆𝑥→(𝑃(𝑥)→𝑌))(𝐻𝑠, ℎ𝐴(𝑓𝑠)) = ℎ𝐵(𝑔𝑠)

Σ(ℎ𝐴 ∶ (𝑎 ∶ 𝐴) → 𝑃(𝑖𝑎) → 𝑌)
(ℎ𝐵 ∶ (𝑏 ∶ 𝐵) → 𝑃(𝑗𝑏) → 𝑌).
(𝑠 ∶ 𝑆)(𝑝 ∶ 𝑃 (𝑖(𝑓𝑠))) →
ℎ𝐴(𝑓𝑠, 𝑝) = ℎ𝐵(𝑔𝑠, tr𝑃(𝐻𝑠, 𝑝)).

cocone-mapΣ𝑐

ev-pair3≃

ind-Σ ≃

dep-cocone-map𝑐 ≃

tot(tot(𝜑))

≃

The types cocone(Σ𝒮, 𝑌) and dep-cocone(𝑐, (𝜆𝑥 → (𝑃(𝑥) → 𝑌))) were ex-
panded in the diagram. The pentagon commutes by reflexivity on the first two
components. To finish the proof, we need to define an equivalence

𝜑 ∶ (ℎ𝐴(𝑓𝑠) ∼ ℎ𝐵(𝑔𝑠) ∘ tr𝑃(𝐻𝑠)) ≃ (tr(𝜆𝑥→(𝑃(𝑥)→𝑌))(𝐻𝑠, ℎ𝐴(𝑓𝑠)) = ℎ𝐵(𝑔𝑠))

such that apd
ℎ
(𝐻𝑠) = 𝜑(𝜆𝑝 → apind-Σ(ℎ)

((𝐻𝑠, refl))). This map and its compu-
tation rule is defined in the next lemma in more generality, which finishes the
proof.

Lemma 2.3.5. Given maps 𝑖, 𝑗 ∶ 𝑆 → 𝑋 with a homotopy 𝐻 ∶ 𝑖 ∼ 𝑗, a type family
𝑃 ∶ 𝑋 → 𝒰, a type 𝑌, and two dependent maps

𝑘 ∶ (𝑠 ∶ 𝑆) → 𝑃(𝑖𝑠) → 𝑌
𝑙 ∶ (𝑠 ∶ 𝑆) → 𝑃(𝑗𝑠) → 𝑌 ,

there is for every 𝑠 ∶ 𝑆 an equivalence

𝜑 ∶ (𝑘(𝑠) ∼ 𝑙(𝑠) ∘ tr𝑃(𝐻𝑠)) ≃ (tr(𝜆𝑥→(𝑃(𝑥)→𝑌))(𝐻𝑠, 𝑘(𝑠)) = 𝑙(𝑠))

Additionally, for 𝑘 ≐ (ℎ ∘ 𝑖) and 𝑙 ≐ (ℎ ∘ 𝑗) where ℎ ∶ (𝑥 ∶ 𝑋) → 𝑃(𝑥) → 𝑌 is any
dependent map, it computes as

𝜑(𝜆𝑝 → apind-Σ(ℎ)
((𝐻𝑠, refl))) = apd

ℎ
(𝐻𝑠).

Proof. By homotopy induction (Lemma 1.0.13), it suffices to consider the case
where 𝑗 ≐ 𝑖 and 𝐻 is the reflexivity homotopy. The goal is

(𝑘(𝑠) ∼ 𝑙(𝑠)) ≃ (𝑘(𝑠) = 𝑙(𝑠)),

which holds by function extensionality.
The computation rule follows again by induction on 𝐻. Then it suffices to

show that𝜑(refl-htpy) = refl. By computation of homotopy induction𝜑(refl-htpy)
computes to eq-htpy(refl-htpy), which computes to refl.

30

Lemma 2.3.6. Given a type family 𝑃 ∶ 𝑋 → 𝒰 with corresponding descent data
(𝑃𝐴, 𝑃𝐵, 𝑃𝑆), there is a commuting cube

Σ𝑆(𝑃𝐴 ∘ 𝑓)

Σ𝐴𝑃𝐴 Σ𝑆(𝑃 ∘ 𝑖 ∘ 𝑓) Σ𝐵𝑃𝐵

Σ𝐴(𝑃 ∘ 𝑖) Σ𝑋𝑃 Σ𝐵(𝑃 ∘ 𝑗)

Σ𝑋𝑃

tot𝑓(id)
tot(𝑒𝐴)

tot𝑔(𝑃𝑆)

tot(𝑒𝐴)

tot𝑓(id) tot𝑔(tr𝑃(𝐻))

tot𝑗(𝑒𝐵)

tot(𝑒𝐵)

tot𝑖(id)

tot𝑖(𝑒𝐴)

id
tot𝑗(id)

where the top square is the coherence of the total cocone of (𝑃𝐴, 𝑃𝐵, 𝑃𝑆) ≈ 𝑃, and the
bottom square is the coherence of the total cocone of (𝑃 ∘ 𝑖, 𝑃 ∘ 𝑗, tr𝑃(𝐻)) ≈ 𝑃.

Proof. The back left, front left, and front right squares commute by refl-htpy.
The back right square commutes by (refl, (𝑒𝑠)−1). The commuting cube is there-
fore an element of the type

(tot𝑖(id) ⋅𝑙 refl-htpy) •ℎ (refl-htpy ⋅𝑟 tot𝑓(id)) •ℎ (id ⋅𝑙(𝐻, 𝑒−1
𝑆)) ∼

((𝐻, refl-htpy) ⋅𝑟 tot(𝑒𝐴)) •ℎ (tot𝑗(id) ⋅𝑙 (refl-htpy, 𝑒−1
𝑆)) •ℎ (refl-htpy ⋅𝑟 tot𝑔(𝑃𝑆)).

The left homotopy computes to id ⋅𝑙(𝐻, 𝑒−1
𝑆), which is homotopic to (𝐻, 𝑒−1

𝑆).
The last concatenant of the right homotopy is refl-htpy, so we can compute it
away.

The new goal is

(𝐻, 𝑒−1
𝑆) ∼ (𝐻, refl-htpy) •ℎ (tot𝑗(id) ⋅𝑙 (refl-htpy, 𝑒−1

𝑆)).

The total map tot𝑗(id) acts on (refl-htpy, 𝑒−1
𝑆) component-wise, so it can be

further computed to (refl-htpy, id ⋅𝑙(𝑒−1
𝑆)), which is homotopic to (refl-htpy, 𝑒−1

𝑆).
To finish the proof, we note that any identification (𝑝, 𝑞) ∶ (𝑠, 𝑡) = (𝑠′, 𝑡′) in a Σ
type can be decomposed as (𝑝, refl) • (refl, 𝑞).

Theorem 2.3.7 (Flattening lemma). Given a pushout 𝑐 and a family with descent
data (𝑃𝐴, 𝑃𝐵, 𝑃𝑆) ≈ 𝑃, the total cocone is a pushout.

Proof. By Lemma 2.3.4, the bottom square in Lemma 2.3.6 is a pushout, and all
of 𝑒𝐴(𝑎), 𝑒𝐴(𝑓𝑠), 𝑒𝐵(𝑏) and id are equivalences, so it follows by Lemma 2.3.1
that the top square is a pushout.

31

2.4 Identity systems
Wedefine auniversal property of descent data for the identity types of pushouts,
which allows their alternative characterizations. The property is analogous
to a pointed type family being an identity system, which manifests it as the
homotopy-initial pointed type family (Lemma 1.0.15); in fact, we show that a
type family over a pushout is an identity system if and only if the correspond-
ing descent data satisfies this universal property.

Given descent data (𝑃𝐴, 𝑃𝐵, 𝑃𝑆) for a span diagram 𝒮 ≐ (𝑓, 𝑔) and a point
𝑝0 ∶ 𝑃𝐴(𝑎0) over a basepoint 𝑎0 ∶ 𝐴, we would like to mirror the definition of
identity systems. A naïve translation would lead us to define dependent de-
scent data and its sections. We choose to sidestep building that technical infras-
tructure.

By the descent property, there is a unique type family 𝑃 ∶ 𝑋 → 𝒰 corre-
sponding to (𝑃𝐴, 𝑃𝐵, 𝑃𝑆). Observe that the type of dependent type families
(𝑥 ∶ 𝑋) → 𝑃(𝑥) → 𝒰 is equivalent to the uncurried form (Σ𝑋𝑃) → 𝒰. By the
flattening lemma, the total space Σ𝑋𝑃 is the pushout of the span diagram of
total spaces

Σ𝐴𝑃𝐴 Σ𝑆(𝑃𝐴 ∘ 𝑓) Σ𝐵𝑃𝐵
tot𝑓 id tot𝑔 𝑃𝑆

so, again by the descent property, descent data over it correspond to type
families over Σ𝑋𝑃. Hence we can talk about descent data (𝑄Σ𝐴, 𝑄Σ𝐵, 𝑄Σ𝑆)
over the total span diagram instead of dependent descent data. We write a Σ in
the indices of 𝑄 to remind ourselves that it is descent data over the total span
diagram.

Construction 2.4.1. Assume a span diagram 𝒮, descent data (𝑃𝐴, 𝑃𝐵, 𝑃𝑆) over
it, a basepoint 𝑎0 ∶ 𝐴 and a point 𝑝0 ∶ 𝑃𝐴(𝑎0). Then for any descent data
(𝑄Σ𝐴, 𝑄Σ𝐵, 𝑄Σ𝑆) over the total span, define the map

ev-refl-id-system-DD ∶ sect(𝑄Σ𝐴, 𝑄Σ𝐵, 𝑄Σ𝑆) → 𝑄Σ𝐴(𝑎0, 𝑝0)

by sending (𝑡𝐴, 𝑡𝐵, 𝑡𝑆) to 𝑡𝐴(𝑎0, 𝑝0).

Definition 2.4.2. Descent data (𝑃𝐴, 𝑃𝐵, 𝑃𝑆) equipped with a point 𝑝0 ∶ 𝑃𝐴(𝑎0)
satisfies the induction principle of identity systems if for all (𝑄Σ𝐴, 𝑄Σ𝐵, 𝑄Σ𝑆),
the map ev-refl-id-system-DD has a section, in the sense that there is a converse
map

ind-Q ∶ 𝑄Σ𝐴(𝑎0, 𝑝0) → sect(𝑄Σ𝐴, 𝑄Σ𝐵, 𝑄Σ𝑆)

and an identification
(ind-Q(𝑞0))𝐴(𝑎0, 𝑝0) = 𝑞0

for all 𝑞0 ∶ 𝑄Σ𝐴(𝑎0, 𝑝0).
Such descent data is called an identity system at 𝑝0.

Mind the unfortunate terminology clash between “sections of descent data”
and “sections of amap”. A section of descent data is an analogue of a dependent
map into 𝑄, while a section of a map ℎ is a converse map 𝑠 such that (ℎ ∘ 𝑠) ∼ id.

32

Remark 2.4.3. Note that this development is biased towards the left — we pick
a basepoint in the domain 𝑎0 ∶ 𝐴, a point in the left type family 𝑝0 ∶ 𝑃𝐴(𝑎0),
and the evaluation map evaluates the left map of the section. By symmetry of
pushouts we could just as well work with the points 𝑏0 ∶ 𝐵, 𝑝0 ∶ 𝑃𝐵(𝑏0), and the
evaluation map evaluating the right map of the section.
Remark 2.4.4. By showing that the canonical descent data for identity types is
an identity system, we recover the “induction principle for pushout equality”
stated and proved by Kraus and von Raumer [7].

First observe that the type of sections of ev-refl-id-system-DD is

Σ (ind-Q ∶ (𝑄Σ𝐴(𝑎0, 𝑝0)) → sect(𝑄Σ𝐴, 𝑄Σ𝐵, 𝑄Σ𝑆))
((𝑞0 ∶ 𝑄Σ𝐴(𝑎0, 𝑝0)) → (ind-Q 𝑞0)𝐴(𝑎0, 𝑝0) = 𝑞0),

which is equivalent to the type

(𝑞0 ∶ 𝑄Σ𝐴(𝑎0, 𝑝0)) →
Σ (ind-Q ∶ sect(𝑄Σ𝐴, 𝑄Σ𝐵, 𝑄Σ𝑆)) (2.1)

(ind-Q𝐴(𝑎0, 𝑝0) = 𝑞0) (2.2)

by Lemma 1.0.20.
Then the induction terms from [7] (with names changed to fit our naming

scheme)

indA ∶ (𝑎 ∶ 𝐴)(𝑟 ∶ 𝑖(𝑎0) = 𝑖(𝑎)) → 𝑄Σ𝐴(𝑎, 𝑟)
indB ∶ (𝑏 ∶ 𝐵)(𝑟 ∶ 𝑖(𝑎0) = 𝑗(𝑏)) → 𝑄Σ𝐵(𝑏, 𝑟)

are the first and second components of the section 2.1 induced by 𝑞0, and their
computation rules

indA(𝑎0, refl) = 𝑞0

𝑄Σ𝑆(𝑠, 𝑟, indA(𝑓𝑠, 𝑟)) = indB(𝑔𝑠, 𝑟 • 𝐻𝑠)

arise as the second component 2.2, and the coherence condition of 2.1, respec-
tively.

We first show a result relating identity systems stated as pointed type fami-
lies and identity systems stated as pointed descent data.

Lemma 2.4.5. Consider a pushout cocone 𝑐 on 𝑋, a type family with corresponding
descent data 𝑒𝑃 ∶ 𝑃 ≈ (𝑃𝐴, 𝑃𝐵, 𝑃𝑆) and a point 𝑝0 ∶ 𝑃𝐴(𝑎0). Then for any type family
with corresponding descent data 𝑒𝑄 ∶ 𝑄Σ ≈ (𝑄Σ𝐴, 𝑄Σ𝐵, 𝑄Σ𝑆) there is a commuting
diagram

((𝑥 ∶ 𝑋)(𝑝 ∶ 𝑃 (𝑥)) → 𝑄Σ(𝑥, 𝑝)) ((𝑢 ∶ Σ𝑋𝑃) → 𝑄Σ𝑢) sect(𝑄Σ𝐴, 𝑄Σ𝐵, 𝑄Σ𝑆)

𝑄Σ(𝑖𝑎0, (𝑒𝑃
𝐴(𝑎0))−1(𝑝0)) 𝑄Σ𝐴(𝑎0, 𝑝0).

≃

ev-refl-id-system

≃

ev-refl-id-system-DD

𝑒𝑄
𝐴(𝑎0,𝑝0)

≃

(2.3)

33

Proof. The top equivalences are, from left to right, ind-Σ and sect-sectΣ𝑐. To see
that the square commutes, note that the first component of sect-sectΣ𝑐(ind-Σ(ℎ))
sends (𝑎, 𝑝) ∶ Σ𝐴𝑃𝐴 to 𝑒𝑄

𝐴(ℎ(𝑖𝑎, (𝑒𝑃
𝐴(𝑎))−1(𝑝))) by definition of the total cocone.

The square commutes by refl-htpy.

Corollary 2.4.6. Assume a pushout cocone 𝑐 on 𝑋 and a family with descent data
𝑒 ∶ 𝑃 ≈ (𝑃𝐴, 𝑃𝐵, 𝑃𝑆) where 𝑃 is an identity system at (𝑒𝐴(𝑎0))−1(𝑝0) ∶ 𝑃 (𝑖𝑎0).
Then (𝑃𝐴, 𝑃𝐵, 𝑃𝑆) is an identity system at 𝑝0.

Proof. For every (𝑄Σ𝐴, 𝑄Σ𝐵, 𝑄Σ𝑆) there is a corresponding type family𝑄Σ. Then
we may apply Equation 2.4.5. The top and bottom maps are equivalences, and
the leftmaps has a section by assumption, hence the rightmap has a section.

Corollary 2.4.7. Analogously, if (𝑃𝐴, 𝑃𝐵, 𝑃𝑆) is an identity system at 𝑝0 ∶ 𝑃𝐴(𝑎0),
then 𝑃 is an identity system at (𝑒𝐴(𝑎0))−1(𝑝0).

Theorem 2.4.8. Given a span diagram 𝒮, a point 𝑎0 ∶ 𝐴, and a pushout cocone 𝑐 on
𝑋, the descent data (𝐼𝐴, 𝐼𝐵, 𝐼𝑆) is an identity system at refl𝑖𝑎0

.

Proof. By Lemma 2.2.14 and Corollary 2.4.6, the descent data (𝐼𝐴, 𝐼𝐵, 𝐼𝑆) is an
identity system at refl ∶ (𝑖𝑎0) = (𝑖𝑎0) if and only if the corresponding type
family Id(𝑖𝑎0) ∶ 𝑋 → 𝒰 is an identity system at refl, which is established in
Lemma 1.0.15.

The induction principle of identity systems is stated in terms of an evalua-
tion map having a section, which makes it consistent with statements of other
induction principles in Homotopy Type Theory. However, the following lemma
shows that the condition on the converse map of being a section is redundant.

Lemma 2.4.9. Consider a span diagram 𝒮, its pushout cocone 𝑐 on 𝑋, and descent
data (𝑃𝐴, 𝑃𝐵, 𝑃𝑆). To show that (𝑃𝐴, 𝑃𝐵, 𝑃𝑆) is an identity system at 𝑝0 ∶ 𝑃𝐴(𝑎0), it
suffices to provide a map

𝑀 ∶ 𝑄Σ𝐴(𝑎0, 𝑝0) → sect(𝑄Σ𝐴, 𝑄Σ𝐵, 𝑄Σ𝑆)

for every descent data (𝑄Σ𝐴, 𝑄Σ𝐵, 𝑄Σ𝑆) over the total span diagram.

Proof. Construct the unique type family 𝑃 ∶ 𝑋 → 𝒰 for (𝑃𝐴, 𝑃𝐵, 𝑃𝑆). It suffices
to show that 𝑃 is an identity system. Equivalently, it suffices to show that the
total space Σ𝑋𝑃 is contractible. We can prove that using the property that a
type is contractible if we provide a point, here (𝑖𝑎0, (𝑒𝑃

𝐴𝑎0)−1(𝑝0)), and a map

𝑀 ′ ∶ (𝑄Σ ∶ Σ𝑋𝑃 → 𝒰) → (𝑞0 ∶ 𝑄Σ(𝑖𝑎0, (𝑒𝑃
𝐴𝑎)−1𝑝0)) → (𝑢 ∶ Σ𝑋𝑃) → 𝑄Σ(𝑢).

Assume such 𝑄Σ and 𝑞0. 𝑄Σ induces descent data (𝑄Σ𝐴, 𝑄Σ𝐵, 𝑄Σ𝑆), and a
section (𝑢 ∶ Σ𝑋𝑃) → 𝑄Σ(𝑢) is given by a section of (𝑄Σ𝐴, 𝑄Σ𝐵, 𝑄Σ𝑆). We can
get such a section by applying 𝑀 to 𝑒𝑄

𝐴((𝑎0, 𝑝0), 𝑞0) ∶ 𝑄Σ𝐴(𝑎0, 𝑝0).

Remark 2.4.10. Note that the pushout 𝑐 is not used in the statement of the lemma.
We include it as a parameter to avoid assuming existence of all pushouts.

34

Theorem 2.4.11. Consider a span diagram 𝒮, a point 𝑎0 ∶ 𝐴, and a pushout cocone 𝑐.
For any identity system (𝑃𝐴, 𝑃𝐵, 𝑃𝑆) at 𝑝0 ∶ 𝑃𝐴(𝑎0), there is a unique equivalence of
descent data

𝑒 ∶ (𝐼𝐴, 𝐼𝐵, 𝐼𝑆) ≃ (𝑃𝐴, 𝑃𝐵, 𝑃𝑆)

such that 𝑒𝐴(refl) = 𝑝0.

Proof. Construct the unique type family𝑃 ∶ 𝑋 → 𝒰 corresponding to (𝑃𝐴, 𝑃𝐵, 𝑃𝑆).
By Theorem2.2.23 the type of point preserving equivalences between (𝐼𝐴, 𝐼𝐵, 𝐼𝑆)
and (𝑃𝐴, 𝑃𝐵, 𝑃𝑆) is equivalent to the type of fiberwise equivalences (𝑥 ∶ 𝑋) →
((𝑖𝑎0) = 𝑥) ≃ 𝑃(𝑥) that send refl to (𝑒𝑃

𝐴𝑎0)−1(𝑝0). To show that this type is con-
tractible, it suffices to show that the total space Σ𝑋𝑃 is contractible, by Corol-
lary 1.0.17. It is contractible if 𝑃 is an identity system, which it is by Corol-
lary 2.4.7 and the assumption that (𝑃𝐴, 𝑃𝐵, 𝑃𝑆) is an identity system.

Unfolding the equivalence, we get the data

𝑒𝐴 ∶ (𝑎 ∶ 𝐴) → (𝑖𝑎0 = 𝑖𝑎) ≃ 𝑃𝐴(𝑎)
𝑒𝐵 ∶ (𝑏 ∶ 𝐵) → (𝑖𝑎0 = 𝑗𝑏) ≃ 𝑃𝐵(𝑏)
𝑒𝑆 ∶ (𝑠 ∶ 𝑆)(𝑝 ∶ 𝑖𝑎0 = 𝑖(𝑓𝑠)) → 𝑒𝐵(𝑔𝑠, 𝑝 • (𝐻𝑠)) = 𝑃𝑆(𝑠, 𝑒𝐴(𝑓𝑠, 𝑝)),

which justifies that claim that identity systems allow alternative characteriza-
tions of identity types of pushouts.

35

36

Chapter 3

Other colimits

Pushouts and the empty type suffice to construct many other kinds of colimits.
We are particularly interested in sequential colimits, which figure prominently
in the zigzag construction in section 4.2. Sequential colimits and some of their
properties may be derived from pushouts. Their construction is more natural
if we first formalize a basic theory of coequalizers on top of pushouts, and then
we formalize sequential colimits on top of coequalizers.

3.1 Coequalizers
Definition 3.1.1. A double arrow is a pair of types 𝐴, 𝐵, equipped with a pair
of maps 𝑓, 𝑔 ∶ 𝐴 → 𝑈.

Definition 3.1.2. Given a double arrow 𝒟 ≐ (𝑓, 𝑔) and a type 𝑋 ∶ 𝒰, a cofork
under 𝒟 on 𝑋 is a pair (𝑖, 𝐻), where 𝑖 ∶ 𝐵 → 𝑋 is a map, and 𝐻 is a homotopy
of type 𝑖 ∘ 𝑓 ∼ 𝑖 ∘ 𝑔.

We write cofork(𝒟, 𝑋) for the type of coforks under 𝒟 on 𝑋.

Construction 3.1.3. Given a cofork 𝑐 ≐ (𝑖, 𝐻) ∶ cofork(𝒟, 𝑋) on 𝑋 and a type 𝑌,
we construct a map

cofork-map𝑌
𝑐

∶ (𝑋 → 𝑌) → cofork(𝒟, 𝑌)

which sends ℎ to (ℎ ∘ 𝑖, ℎ ⋅𝑙 𝐻).

Definition 3.1.4. A cofork 𝑐 under 𝒟 on 𝑋 satisfies the universal property of
coequalizers if for all types 𝑌 the map cofork-map𝑌

𝑐
is an equivalence.

A cofork satisfying the universal property of coequalizers is called a co-
equalizer.

Construction 3.1.5. Construct the map span-double-arrow from double arrows
to span diagrams by

𝐴 𝐵
𝑔

𝑓
↦ 𝐴 𝐴 + 𝐴 𝐵,∇ [𝑓,𝑔]

where ∇ is the codiagonal map, sending inl(𝑎) and inr(𝑎) to 𝑎, and the right
map is defined by the universal property of coproducts to send inl(𝑎) to 𝑓(𝑎)
and inr(𝑎) to 𝑔(𝑎).

37

The standard coequalizer of a double arrow𝒟maybe obtained as the pushout
of span-double-arrow(𝒟).

Lemma 3.1.6. For any double arrow 𝒟 and a type 𝑋, there is an equivalence

cocone-cofork ∶ cofork(𝒟, 𝑋) ≃ cocone(span-double-arrow(𝒟), 𝑋)

which fits into the following commuting triangle for every cofork 𝑐 ∶ cofork(𝒟, 𝑋)

(𝑋 → 𝑌) cofork(𝒟, 𝑌)

cocone(span-double-arrow(𝒟), 𝑌).

cofork-map𝑐

cocone-mapcocone-cofork(𝑐) cocone-cofork
≃

Proof. To define the forward map, assume a cofork (𝑗, 𝐻), where 𝑗 ∶ 𝐵 → 𝑋
and 𝐻 ∶ 𝑗 ∘ 𝑓 ∼ 𝑗 ∘ 𝑔. To construct the cocone under span-double-arrow(𝒟), take
𝑗 ∘ 𝑓 ∶ 𝐴 → 𝑋 to be the first component and 𝑗 to be the second component. It
remains to construct a homotopy

𝐴 + 𝐴 𝐵

𝐴 𝑋.

[𝑓,𝑔]

∇ 𝑗

𝑗∘𝑓

On inl(𝑎) ∶ 𝐴+𝐴 the square commutes by refl, and on inr(𝑎) ∶ 𝐴+𝐴 it commutes
by 𝐻 ∶ 𝑗 ∘ 𝑓 ∼ 𝑗 ∘ 𝑔, which we write as [refl-htpy, 𝐻].

To define the inverse map, assume a cocone (𝑖, 𝑗, 𝐻) where 𝑖 ∶ 𝐴 → 𝑋,
𝑗 ∶ 𝐵 → 𝑋, and 𝐻 witnesses commutativity of the square

𝐴 + 𝐴 𝐵

𝐴 𝑋.

[𝑓,𝑔]

∇ 𝑗

𝑖

Since the codomain of the homotopy is a coproduct, it corresponds to a pair
of homotopies 𝐻1 ∶ 𝑖 ∼ 𝑗 ∘ 𝑓 and 𝐻2 ∶ 𝑖 ∼ 𝑗 ∘ 𝑔. To construct the cofork under 𝒟,
take 𝑗 to be the first component, and the concatenation 𝐻−1

1 •ℎ 𝐻2 ∶ 𝑗 ∘ 𝑓 ∼ 𝑗 ∘ 𝑔
for the second component.

We need to show that the maps are mutual inverses. A cofork (𝑗, 𝐻) is first
mapped to (𝑗∘𝑓, 𝑗, [refl-htpy, 𝐻]) and then to (𝑗, refl-htpy−1 •ℎ𝐻), so the compo-
sition is homotopic to id via refl-htpy. Conversely, assume a cocone 𝑐≐(𝑖, 𝑗, 𝐻).
It gets mapped to (𝑗, 𝐻−1

1 •ℎ 𝐻2) and then to (𝑗∘𝑓, 𝑗, [refl-htpy, 𝐻−1
1 •ℎ 𝐻2]), call

it 𝑐′. We construct a homotopy of cocones 𝑐′ ∼ 𝑐 — the homotopies on maps are
given by

𝐻−1
1 ∶ (𝑗 ∘ 𝑓) ∼ 𝑖

refl-htpy ∶ 𝑗 ∼ 𝑗,

38

and the coherence is [𝛼1, 𝛼2], where

𝛼1 ∶= linv-htpy−1 ∶ refl-htpy ∼(𝐻−1
1 •ℎ 𝐻1)

𝛼2 ∶= runit-htpy ∶ (𝐻−1
1 •ℎ 𝐻2 •ℎ refl-htpy) ∼ (𝐻−1

1 •ℎ 𝐻2).

To show commutativity of the triangle, chase a map ℎ ∶ 𝑋 → 𝑌:

ℎ (ℎ ∘ 𝑗, ℎ ⋅𝑙 𝐻)

⎛⎜⎜
⎝

ℎ ∘ 𝑗 ∘ 𝑓,
ℎ ∘ 𝑗,
ℎ ⋅𝑙 [refl-htpy, 𝐻]

⎞⎟⎟
⎠

= ⎛⎜⎜
⎝

ℎ ∘ 𝑗 ∘ 𝑓,
ℎ ∘ 𝑗,
[refl-htpy, ℎ ⋅𝑙 𝐻]

⎞⎟⎟
⎠

.

The first two components are identical, so it suffices to show that for all
𝑎 ∶ 𝐴 + 𝐴, the identifications ap

ℎ
([refl-htpy, 𝐻] (𝑎)) and [refl-htpy, ap

ℎ
(𝐻(𝑎))]

agree. On elements of the form inl(𝑎) they both compute to refl, and on ele-
ments of the form inr(𝑎) they compute to ap

ℎ
(𝐻(𝑎)), so they are identified by

refl.

Lemma 3.1.7. The equivalence cocone-cofork restricts to an equivalence between co-
equalizers of 𝒟 and pushouts of span-double-arrow(𝒟). In other words, a cofork 𝑐 sat-
isfies the universal property of coequalizers if and only if the cocone cocone-cofork(𝑐)
satisfies the universal property of pushouts.

Proof. By the commuting triangle in Lemma 3.1.6 and the 3-for-2 property of
equivalences, cofork-map

𝑐
is an equivalence if and only if the corresponding

cocone-map is an equivalence.

We define dependent coforks and the dependent universal property of co-
equalizers analogously to the case of dependent cocones.

Definition 3.1.8. Consider a cofork 𝑐 ≐ (𝑖, 𝐻) ∶ cofork(𝒟, 𝑋) and a type family
𝑃 ∶ 𝑋 → 𝒰. A dependent cofork over 𝑐 on 𝑃 is a pair (𝑖′, 𝐻′), where

𝑖′ ∶ (𝑏 ∶ 𝐵) → 𝑃(𝑖𝑏)
𝐻′ ∶ (𝑎 ∶ 𝐴) → tr𝑃(𝐻𝑎)(𝑖(𝑓𝑎)) = 𝑖(𝑔𝑎).

We write dep-cofork(𝑐, 𝑃) for the type of dependent coforks over 𝑐 on 𝑃.

Construction 3.1.9. Given a cofork 𝑐 ≐ (𝑖, 𝐻) ∶ cofork(𝒟, 𝑋) and a type family
𝑃 ∶ 𝑋 → 𝒰, define a map

dep-cofork-map𝑃
𝑐

∶ ((𝑥 ∶ 𝑋) → 𝑃(𝑥)) → dep-cofork(𝑐, 𝑃)

which sends ℎ to (ℎ ∘ 𝑖, 𝜆𝑎 → apd
ℎ
(𝐻𝑎)).

Definition 3.1.10. A cofork 𝑐 satisfies the dependent universal property of co-
equalizers if for all 𝑃 ∶ 𝑋 → 𝒰, the map dep-cofork-map𝑃

𝑐
is an equivalence.

39

Lemma 3.1.11. For any cofork 𝑐 ∶ cofork(𝒟, 𝑋), there is an equivalence

dep-cocone-dep-cofork ∶ dep-cofork(𝑐, 𝑃)
≃ dep-cocone(cocone-cofork(𝑐), 𝑃)

such that the following diagram commutes

(𝑋 → 𝑌) dep-cofork(𝑐, 𝑃)

dep-cocone(cocone-cofork(𝑐), 𝑃).

dep-cofork-map𝑐

dep-cocone-mapcocone-cofork(𝑐) dep-cocone-dep-cofork
≃

Proof. Completely analogous to the proof of Lemma 3.1.6.

Lemma 3.1.12. A cofork 𝑐 ∶ cofork(𝒟, 𝑋) satisfies the dependent universal property of
coequalizers if and only if the cocone cocone-cofork(𝑐) satisfies the dependent universal
property of pushouts.

Proof. By the commuting triangle in Lemma 3.1.11, themap dep-cofork-map
𝑐
is

an equivalence if and only ifdep-cocone-mapcocone-cofork(𝑐)
is an equivalence.

Theorem 3.1.13. A cofork satisfies the universal property of coequalizers if and only if
it satisfies the dependent universal property of coequalizers.

Proof. Given a cofork 𝑐, there is a sequence of logical equivalences

𝑐 satisfies the universal property of coequalizers
↔ cocone-cofork(𝑐) satisfies the universal property of pushouts
↔ cocone-cofork(𝑐) satisfies the dependent universal property of pushouts
↔ 𝑐 satisfies the dependent universal property of coequalizers.

The equivalences are, in order: Lemma3.1.7, Theorem2.1.16, andLemma3.1.12.

Coequalizers also satisfy descent, but we do not explore it in the thesis. It is
simple enough to derive for different colimits from the univalence axiom. We
do, however, prove the flattening lemma for coequalizers, which we will use to
prove the flattening lemma for sequential colimits.

Construction 3.1.14. Given a double arrow 𝒟 ≐ (𝑓, 𝑔), a cofork 𝑐 ≐ (𝑖, 𝐻) on 𝑋,
and a type family 𝑃 ∶ 𝑋 → 𝒰, define the total cofork Σ𝑐 to be

Σ𝐴(𝑃 ∘ 𝑖 ∘ 𝑓) Σ𝐵(𝑃 ∘ 𝑖) Σ𝑋𝑃,
tot𝑔(tr𝑃(𝐻))

tot𝑓(id)

tot𝑖(id)

where the map tot𝑔(tr𝑃(𝐻)) takes (𝑎, 𝑝) to (𝑔𝑎, tr𝑃(𝐻𝑎, 𝑝)), and the homotopy is

(𝐻, refl-htpy) ∶ (tot𝑖(id) ∘ tot𝑓(id)) ∼ (tot𝑖(id) ∘ tot𝑔(tr𝑃(𝐻))).

Theorem 3.1.15 (Flattening lemma for coequalizers). Given a coequalizer 𝑐 on 𝑋
and a type family 𝑃 ∶ 𝑋 → 𝒰, the total cofork is also a coequalizer.

40

Proof. To show that the total cocone is a coequalizer, it suffices to show that the
corresponding cocone is a pushout. Construct the cube

Σ(𝐴 + 𝐴)(𝑃 ∘ 𝑖 ∘ 𝑓 ∘ ∇)

Σ𝐴(𝑃 ∘ 𝑖 ∘ 𝑓) (Σ𝐴(𝑃 ∘ 𝑖 ∘ 𝑓)) + (Σ𝐴(𝑃 ∘ 𝑖 ∘ 𝑓)) Σ𝐵(𝑃 ∘ 𝑖)

Σ𝐴(𝑃 ∘ 𝑖 ∘ 𝑓) Σ𝑋𝑃 Σ𝐵(𝑃 ∘ 𝑖)

Σ𝑋𝑃

tot∇(id)
𝜓≃

tot[𝑓,𝑔](tr𝑃[refl-htpy,𝐻])

id ∇ [tot𝑓(id),tot𝑔(tr𝑃(𝐻))]

tot𝑖(id)

id

tot𝑖(id)∘tot𝑓(id)

tot𝑖∘𝑓(id)

id
tot𝑖(id)

where the homotopy

[refl-htpy, 𝐻] ∶ (𝑖 ∘ 𝑓 ∘ ∇) ∼ (𝑖 ∘ [𝑓, 𝑔])

is defined by sending elements inl(𝑎) to refl ∶ 𝑖(𝑓𝑎) = 𝑖(𝑓𝑎) and elements inr(𝑎)
to 𝐻(𝑎) ∶ 𝑖(𝑓𝑎) = 𝑖(𝑔𝑎). The equivalence

𝜓 ∶ (Σ(𝐴 + 𝐴)(𝑃 ∘ 𝑖 ∘ 𝑓 ∘ ∇)) ≃ ((Σ𝐴(𝑃 ∘ 𝑖 ∘ 𝑓)) + (Σ𝐴(𝑃 ∘ 𝑖 ∘ 𝑓)))

sends (inl(𝑎), 𝑝) to inl(𝑎, 𝑝) and (inr(𝑎), 𝑝) to inr(𝑎, 𝑝).
The bottom square is the cocone corresponding to the total cofork,

cocone-cofork(Σ𝑐), and the top square is the total cocone of the correspond-
ing cocone, Σ(cocone-cofork(𝑐)). The two front squares commute by refl-htpy,
and the back two squares commute by ([refl-htpy, refl-htpy] , refl-htpy).

Since 𝑐 is a coequalizer by assumption, it holds that the corresponding co-
cone is a pushout, so by Theorem 2.3.7 the top square of the cube is a pushout.
Note that all the vertical maps are equivalences, and the goal is to show that the
bottom square is a pushout. Hence it suffices to show that the cube commutes.

To show that the cube commutes, we proceed by cases: for elements of the
form (inl(𝑎), 𝑝), all the identifications collapse to refl, so in that fiber the cube
commutes by refl. For elements of the form (inr(𝑎), 𝑝), we need an identification

refl • refl •(apid(𝐻(𝑎), refl)) = (𝐻(𝑎), refl) • refl • refl,

whichwe can get by unit laws for concatenating refl’s andwhiskering by id.

3.2 Sequential colimits
Sequential colimits are colimits of sequential diagrams, which are sequences of
types indexed by natural numbers, equipped with connecting maps between
each type 𝐴𝑛 and its successor 𝐴𝑛+1. In the literature, sequential diagrams are
also known as “cotowers”. We decided to use “sequential diagrams” in the
agda-unimath library, because we believe it to be a more approachable term.

41

https://unimath.github.io/agda-unimath/

This development formalizes sections 3 and 4 from a paper on treatment
of sequential colimits in Homotopy Type Theory, due to Sojakova, van Doorn
and Rijke [17], and their main theorem about commutativity of Σ types and
sequential colimits, for the special case of equifibered sequential diagrams.

Not all of the built infrastructure is necessary for the zigzag construction,
which we are building towards, but the flattening lemma and especially the full
“generalized flattening lemma” from [17] are used in the same paper to prove
truncatedness and connectivity results, which are used in applications of the
zigzag construction.

Definition 3.2.1. A sequential diagram is a pair (𝐴, 𝑎) of a sequence of types
𝐴 ∶ ℕ → 𝒰 and a family of maps 𝑎 ∶ (𝑛 ∶ ℕ) → 𝐴(𝑛) → 𝐴(𝑛 + 1).

We will often write 𝐴𝑛 and 𝑎𝑛 for 𝐴(𝑛) and 𝑎(𝑛), respectively.

Definition 3.2.2. Given a sequential diagram 𝒜 ≐ (𝐴, 𝑎) and a type 𝑋, a cocone
under𝒜 on𝑋 is a pair (𝑖, 𝐻) consisting of a family ofmaps 𝑖 ∶ (𝑛 ∶ ℕ) → 𝐴𝑛 → 𝑋
and a family of homotopies 𝐻 ∶ (𝑛 ∶ ℕ) → 𝑖𝑛 ∼ 𝑖𝑛+1 ∘ 𝑎𝑛.

𝐴0 𝐴1 𝐴2 ⋯

𝑋

𝑎0

𝑖0

𝑎1

𝑖1
𝐻0

𝑎2

𝑖2
⋯𝐻1

We write coconeℕ(𝒜, 𝑋) for the type of cocones under the sequential dia-
gram 𝒜 on the type 𝑋.

Remark 3.2.3. In the prose, we use “cocone” to mean both “cocone under a
span diagram” and “cocone under a sequential diagram”. The kind of diagram
should be clear from the context.

Construction 3.2.4. Given a cocone 𝑐 ≐ (𝑖, 𝐻) ∶ coconeℕ(𝒜, 𝑋) and a type 𝑌, we
construct the map

coconeℕ-map𝑌
𝑐

∶ (𝑋 → 𝑌) → coconeℕ(𝒜, 𝑌)

which sends ℎ to (𝜆𝑛 → ℎ ∘ 𝑖𝑛, 𝜆𝑛 → ℎ ⋅𝑙 𝐻𝑛).

Definition 3.2.5. Acocone 𝑐 ∶ coconeℕ(𝒜, 𝑋) satisfies theuniversal property of
sequential colimits if for all types 𝑌, the map coconeℕ-map𝑌

𝑐
is an equivalence.

A cocone satisfying the universal property of sequential colimits is called a
sequential colimit.

To provide usable computation rules for maps out of sequential colimits, we
introduce homotopies of cocones under sequential diagrams.

Definition 3.2.6. Given a sequential diagram 𝒜 ≐ (𝐴, 𝑎) and two cocones 𝑐 ≐
(𝑖, 𝐻) and 𝑐′ ≐ (𝑖′, 𝐻′) on 𝑋, a homotopy between 𝑐 and 𝑐′ is a pair (𝐾, 𝛼)
consisting of a family of homotopies

𝐾 ∶ (𝑛 ∶ ℕ) → 𝑖𝑛 ∼ 𝑖′
𝑛

and a family of commuting squares of homotopies, one for each 𝑛 ∶ ℕ,

42

𝑖𝑛 𝑖′
𝑛

𝑖𝑛+1 ∘ 𝑎𝑛 𝑖′
𝑛+1 ∘ 𝑎𝑛.

𝐾𝑛

𝐻𝑛 𝐻′
𝑛

𝐾𝑛+1⋅𝑟𝑎𝑛

We write 𝑐 ∼ 𝑐′ for the type of homotopies between 𝑐 and 𝑐′.

Lemma 3.2.7. For a sequential diagram 𝒜 and two cocones 𝑐, 𝑐′ ∶ coconeℕ(𝒜, 𝑋),
there is an equivalence

htpy-eq-coconeℕ ∶ (𝑐 = 𝑐′) ≃ (𝑐 ∼ 𝑐′).

Lemma 3.2.8. Given a sequential diagram 𝒜 ≐ (𝐴, 𝑎), its sequential colimit
𝑐 ≐ (𝑖, 𝐻) ∶ coconeℕ(𝒜, 𝑋) and a cocone 𝑐′ ≐ (𝑖′, 𝐻′) ∶ coconeℕ(𝒜, 𝑌), there is
a unique map ℎ ∶ 𝑋 → 𝑌 equipped with a family of homotopies

𝐾 ∶ (𝑛 ∶ ℕ) → ℎ ∘ 𝑖𝑛 ∼ 𝑖′
𝑛

and a family of commuting squares of homotopies, indexed by 𝑛 ∶ ℕ

ℎ ∘ 𝑖𝑛 𝑖′
𝑛

ℎ ∘ 𝑖𝑛+1 ∘ 𝑎𝑛 𝑖′
𝑛+1 ∘ 𝑎𝑛.

𝐾𝑛

ℎ⋅𝑙𝐻𝑛 𝐻′

𝐾𝑛+1⋅𝑟𝑎𝑛

Lemma 3.2.9. Given a sequential diagram 𝒜 and its sequential colimit
𝑐 ∶ coconeℕ(𝒜, 𝑋), the unique map induced by the universal property of 𝑐 by the
cocone 𝑐 is the identity map id ∶ 𝑋 → 𝑋.

Proof. Write 𝑐≐(𝑖, 𝐻). Themap induced by the universal property is the unique
map ℎ ∶ 𝑋 → 𝑋 such that there is a homotopy of cocones between
coconeℕ-map

𝑐
(ℎ) and 𝑐. It then suffices to show that there is a homotopy of

cocones between coconeℕ-map
𝑐
(id) and 𝑐. The homotopy on maps is satisfied

by
(𝜆𝑛 → refl-htpy) ∶ (𝑛 ∶ ℕ) → (id ∘𝑖𝑛) ∼ 𝑖𝑛.

The coherence

𝛼𝑛 ∶ ((id ⋅𝑙𝐻𝑛) •ℎ refl-htpy) ∼ (refl-htpy •ℎ𝐻𝑛)

is provided by a combination of the unit law of left whiskering and right unit
law of concatenating homotopies.

We proceed to build sequential colimits out of coequalizers.

Construction 3.2.10. Construct the map double-arrow-seq from sequential di-
agrams to double arrows by

𝐴0 𝐴1 ⋯𝑎0 𝑎1 ↦ Σℕ𝐴 Σℕ𝐴,
tot+1(𝑎−)

id

43

where the map tot+1(𝑎−) takes (𝑛, 𝑥) to (𝑛 + 1, 𝑎𝑛(𝑥)).

The sequential colimit of 𝒜 may be obtained as the coequalizer of
double-arrow-seq(𝒜). Proofs of some of the following lemmas mirror exactly
their counterparts in section 3.1, and are therefore omitted.

Lemma 3.2.11. For any sequential diagram 𝒜 and a type 𝑋, there is an equivalence

cofork-coconeℕ ∶ coconeℕ(𝒜, 𝑋) ≃ cofork(double-arrow-seq(𝒜), 𝑋)

which fits into the following commuting triangle for every cocone 𝑐 ∶ coconeℕ(𝒜, 𝑋)

(𝑋 → 𝑌) coconeℕ(𝒜, 𝑌)

cofork(double-arrow-seq(𝒜), 𝑋).

coconeℕ-map𝑐

cofork-mapcofork-coconeℕ(𝑐) cofork-coconeℕ
≃

Proof. To define the forward map, assume a cocone (𝑖, 𝐻) where

𝑖 ∶ (𝑛 ∶ ℕ) → 𝐴𝑛 → 𝑋
𝐻 ∶ (𝑛 ∶ ℕ)(𝑥 ∶ 𝐴𝑛) → 𝑖𝑛(𝑥) = 𝑖𝑛+1(𝑎𝑛𝑥).

Uncurrying both components, we get

ind-Σ(𝑖) ∶ Σℕ𝐴 → 𝑋
ind-Σ(𝐻) ∶ ind-Σ(𝑖) ∼ ind-Σ(𝑖) ∘ tot+1(𝑎−),

which is a cofork under double-arrow-seq(𝒜).
In reverse, assume a cofork (𝑗, 𝐾) where

𝑗 ∶ Σℕ𝐴 → 𝑋
𝐾 ∶ 𝑗 ∼ 𝑗 ∘ tot+1(𝑎−),

and curry both components to get

ev-pair(𝑗) ∶ (𝑛 ∶ ℕ) → 𝐴𝑛 → 𝑋
ev-pair(𝐾) ∶ (𝑛 ∶ ℕ) → ev-pair(𝑗)(𝑛) ∼ ev-pair(𝑗)(𝑛 + 1) ∘ 𝑎𝑛,

which is a cocone under 𝒜.
Since currying and uncurrying are judgmental inverses, we conclude that

the forward and backward maps are inverses of each other by refl-htpy and
refl-htpy.

To prove commutativity of the triangle, assume a cocone (𝑖, 𝐻) and compute
the action on a map ℎ ∶ 𝑋 → 𝑌. The resulting coforks we get are

ℎ ∘ ind-Σ(𝑖)
ℎ ⋅𝑙 ind-Σ(𝐻)

and
ind-Σ(𝜆𝑛 → ℎ ∘ 𝑖𝑛)
ind-Σ(𝜆𝑛 → ℎ ⋅𝑙 𝐻𝑛)

which both compute to

𝜆(𝑛, 𝑥) → ℎ(𝑖𝑛𝑥)
𝜆(𝑛, 𝑥) → ap

ℎ
(𝐻𝑛𝑥),

so the triangle also commutes by refl-htpy.

44

Lemma 3.2.12. A cocone 𝑐 ∶ coconeℕ(𝒜, 𝑋) is a sequential colimit if and only if the
cofork cofork-coconeℕ(𝑐) is a coequalizer.

Proof. Omitted.

Definition 3.2.13. Consider a cocone 𝑐 ≐ (𝑖, 𝐻) ∶ coconeℕ(𝒜, 𝑋) and a type
family 𝑃 ∶ 𝑋 → 𝒰. A dependent cocone over 𝑐 on 𝑃 is a pair (𝑖′, 𝐻′) where

𝑖′ ∶ (𝑛 ∶ ℕ)(𝑥 ∶ 𝐴𝑛) → 𝑃(𝑖𝑛𝑥)
𝐻′ ∶ (𝑛 ∶ ℕ)(𝑥 ∶ 𝐴𝑛) → tr𝑃(𝐻𝑛𝑥, 𝑖′

𝑛𝑥) = 𝑖′
𝑛+1(𝑎𝑛𝑎).

We write dep-coconeℕ(𝑐, 𝑃) for the type of dependent cocones over 𝑐 on 𝑃.

Construction 3.2.14. Given a cofork 𝑐≐(𝑖, 𝐻) ∶ coconeℕ(𝒜, 𝑋) and a type family
𝑃 ∶ 𝑋 → 𝒰, construct the map

dep-coconeℕ-map𝑃
𝑐

∶ ((𝑥 ∶ 𝑋) → 𝑃(𝑥)) → dep-coconeℕ(𝑐, 𝑃)

which sends ℎ to (𝜆𝑛 → ℎ ∘ 𝑖𝑛, 𝜆𝑛, 𝑥 → apd
ℎ
(𝐻𝑛𝑥)).

Definition 3.2.15. A cocone 𝑐 satisfies the dependent universal property of se-
quential colimits if for all 𝑃 ∶ 𝑋 → 𝒰, the map dep-coconeℕ-map𝑃

𝑐
is an equiv-

alence.

We define homotopies of dependent cocones, because later on in section 4.3
we work with the computation rules of dependent maps from sequential col-
imits induced by dependent cocones.

Definition 3.2.16. Given a sequential diagram 𝒜 ≐ (𝐴, 𝑎), a cocone 𝑐 ≐ (𝑖, 𝐻)
on 𝑋, and two dependent cocones 𝑑 ≐ (𝑗, 𝐿) and 𝑑′ ≐ (𝑗′, 𝐿′) on 𝑃, a homotopy
between 𝑑 and 𝑑′ is a pair (𝐾, 𝛼) of a family of homotopies

𝐾 ∶ (𝑛 ∶ ℕ) → 𝑗𝑛 ∼ 𝑗′
𝑛

and a family of commuting squares of identifications, indexed by 𝑛 ∶ ℕ and
𝑥 ∶ 𝐴𝑛

tr𝑃(𝐻𝑛𝑥)(𝑗𝑛𝑥) tr𝑃(𝐻𝑛𝑥)(𝑗′
𝑛𝑥)

𝑗𝑛+1(𝑎𝑛𝑥) 𝑗′
𝑛+1(𝑎𝑛𝑥).

aptr𝑃(𝐻𝑛𝑥)(𝐾𝑛𝑥)

𝐿𝑛(𝑥) 𝐿′
𝑛(𝑥)

𝐾𝑛+1(𝑎𝑛𝑥)

We write 𝑑 ∼ 𝑑′ for the type of homotopies between 𝑑 and 𝑑′.

Lemma 3.2.17. For every pair of dependent cocones 𝑑, 𝑑′ ∶ dep-coconeℕ(𝑐, 𝑃), there
is an equivalence

htpy-eq-dep-coconeℕ ∶ (𝑑 = 𝑑′) ≃ (𝑑 ∼ 𝑑′).

Lemma 3.2.18. Given a sequential diagram 𝒜≐(𝐴, 𝑎), its sequential colimit 𝑐≐(𝑖, 𝐻)
on 𝑋, and a dependent cocone 𝑑 ≐ (𝑖′, 𝐻′) ∶ dep-coconeℕ(𝑐, 𝑃), there is a unique
dependent map ℎ ∶ (𝑥 ∶ 𝑋) → 𝑃(𝑥) equipped with a family of homotopies

𝐾 ∶ (𝑛 ∶ ℕ) → ℎ ∘ 𝑖𝑛 ∼ 𝑖′
𝑛

and a family of commuting squares of identifications indexed by 𝑛 ∶ ℕ and 𝑥 ∶ 𝐴𝑛

45

tr𝑃(𝐻𝑛𝑥)(ℎ(𝑖𝑛𝑥)) tr𝑃(𝐻𝑛𝑥)(𝑖′
𝑛𝑥)

ℎ(𝑖𝑛+1(𝑎𝑛𝑥)) 𝑖′
𝑛+1(𝑎𝑛𝑥)

aptr𝑃(𝐻𝑛𝑥)(𝐾𝑛𝑥)

apdℎ(𝐻𝑛𝑥) 𝐻′(𝑥)

𝐾𝑛+1(𝑎𝑛𝑥)

Lemma 3.2.19. For any cocone 𝑐 ∶ coconeℕ(𝒜, 𝑋), there is an equivalence

dep-cofork-dep-coconeℕ ∶ dep-coconeℕ(𝑐, 𝑃)
≃ dep-cofork(cofork-coconeℕ(𝑐), 𝑃)

such that the following diagram commutes

((𝑥 ∶ 𝑋) → 𝑃(𝑥)) dep-coconeℕ(𝑐, 𝑃)

dep-cofork(cofork-coconeℕ(𝑐), 𝑃).

dep-coconeℕ-map𝑐

dep-cofork-mapcofork-coconeℕ(𝑐) dep-cofork-dep-coconeℕ

Proof. Omitted.

Lemma 3.2.20. A cocone 𝑐 ∶ coconeℕ(𝒜, 𝑋) satisfies the dependent universal prop-
erty of sequential colimits if and only if the cofork cofork-coconeℕ(𝑐) satisfies the de-
pendent universal property of coequalizers.

Proof. Omitted.

Theorem 3.2.21. A cocone 𝑐 ∶ coconeℕ(𝒜, 𝑋) satisfies the universal property of se-
quential colimits if and only if it satisfies the dependent universal property of sequential
colimits.

Proof. Omitted.

3.2.1 Functoriality
Uniformly constructing a sequential colimit of every sequential diagramamounts
to having a map from the type of sequential diagrams to the type of types
equipped with the structure of a sequential colimit on it. We show that this
action on objects, taking a sequential diagram to a type, extends to an action on
morphisms, which takes a morphism of sequential diagrams to a map between
the corresponding types. Additionally, this action on morphisms is functorial,
i.e. it takes the identity morphism to the identity map and composition of mor-
phisms to composition of maps.

To formally state this property, we first need to define morphisms of se-
quential diagrams and their composition. We also show that homotopies of
morphisms of sequential diagrams induce homotopies of the appropriate maps
between colimits.

The theory does not assume a uniform construction of standard sequen-
tial colimits. Instead the constructions and proofs are parametric over a user-
provided sequential colimit. This generality is important for later applications
in section 4.1, where the colimit is not judgmentally equal to the standard one.

46

The presented results cover Lemma 3.5 from [17], except preservation of
equivalences. That result is part of the attached formalization, but not included
in the thesis text. Likewise, elementary theory of commuting prisms of maps
was introduced for the formalization, but not described in this text.

Definition 3.2.22. Given sequential diagrams (𝐴, 𝑎) and (𝐵, 𝑏), define the type
of morphisms from (𝐴, 𝑎) to (𝐵, 𝑏), denoted (𝐴, 𝑎) → (𝐵, 𝑏), as the type of pairs
(𝑓, 𝐻) consisting of a family of maps

𝑓 ∶ (𝑛 ∶ ℕ) → 𝐴𝑛 → 𝐵𝑛

and a family of homotopies witnessing that the following squares of maps, in-
dexed by 𝑛 ∶ ℕ, commute

𝐴𝑛 𝐴𝑛+1

𝐵𝑛 𝐵𝑛+1.

𝑎𝑛

𝑓𝑛 𝑓𝑛+1

𝑏𝑛

𝐻𝑛

All sequential diagrams come equipped with an identity morphism.

Construction 3.2.23. Given a sequential diagram (𝐴, 𝑎), construct the identity
morphism (𝐴, 𝑎) → (𝐴, 𝑎) consisting of the data

(𝜆𝑛 → id) ∶ (𝑛 ∶ ℕ) → 𝐴𝑛 → 𝐴𝑛

(𝜆𝑛 → refl-htpy) ∶ (𝑛 ∶ ℕ) → 𝑎𝑛 ∼ 𝑎𝑛.

Morphisms can be composed.

Construction 3.2.24. Given sequential diagrams (𝐴, 𝑎), (𝐵, 𝑏) and (𝐶, 𝑐), and
morphisms

𝐹 ≐ (𝑓, 𝐻) ∶ (𝐴, 𝑎) → (𝐵, 𝑏)
𝐺 ≐ (𝑔, 𝐾) ∶ (𝐵, 𝑏) → (𝐶, 𝑐),

construct the composed morphism 𝐺 ∘ 𝐹 ∶ (𝐴, 𝑎) → (𝐶, 𝑐) by function compo-
sition

(𝜆𝑛 → 𝑔𝑛 ∘ 𝑓𝑛) ∶ (𝑛 ∶ ℕ) → 𝐴𝑛 → 𝐶𝑛

and pasting of commuting squares

𝐴𝑛 𝐴𝑛+1

𝐵𝑛 𝐵𝑛+1

𝐶𝑛 𝐶𝑛+1.

𝑎𝑛

𝑓𝑛 𝑓𝑛+1

𝑏𝑛

𝑔𝑛

𝐻𝑛

𝑔𝑛+1

𝑐𝑛

𝐾𝑛

To construct a map 𝑋 → 𝑌 between sequential colimits, we can use the uni-
versal property of 𝑋. That requires us to construct a cocone under 𝑋’s diagram
on 𝑌.

47

Construction 3.2.25. Given a sequential diagram ℬ and a cocone 𝑐 ≐ (𝑖, 𝐻) on
𝑌, define for every sequential diagram 𝒜 the map

precomp-homℕ𝒜
𝑐

∶ (𝒜 → ℬ) → coconeℕ(𝒜, 𝑌)

which sends a morphism (𝑓, 𝐾) to the cocone

𝐴𝑛 𝐴𝑛+1

𝐵𝑛 𝐵𝑛+1

𝑌 .

𝑎𝑛

𝑓𝑛 𝑓𝑛+1

𝑏𝑛

𝑖𝑛

𝐾𝑛

𝑖𝑛+1

𝐻𝑛

Remark 3.2.26. This construction is in a sense dual to coconeℕ-map — the func-
tion coconeℕ-map extends a cocone by postcomposing a map 𝑋 → 𝑌 on the
right, and precomp-homℕ extends a cocone by “precomposing” a morphism
ℬ → 𝒜 on the left.

Construction 3.2.27. Given sequential diagrams 𝒜 and ℬ, a sequential colimit
𝑐 ∶ coconeℕ(𝒜, 𝑋), and a cocone 𝑐′ ∶ coconeℕ(ℬ, 𝑌), construct the map

fmap-homℕ ∶ (𝒜 → ℬ) → (𝑋 → 𝑌)

using the universal property of 𝑐, as the map taking a morphism 𝑓 ∶ 𝒜 → ℬ to
the unique map induced by the cocone precomp-homℕ

𝑐′(𝑓) ∶ cocone(𝒜, 𝑌).
We often write 𝑓∞ ∶ 𝑋 → 𝑌 for the map induced by a morphism 𝑓 ∶ 𝒜 → ℬ.

Lemma 3.2.28. The map 𝑓∞ fits into commuting squares

𝐴𝑛 𝐵𝑛

𝑋 𝑌 .

𝑓𝑛

𝑖𝑛 𝑖′
𝑛

𝑓∞

which in turn fit into commuting prisms

𝐴𝑛 𝐴𝑛+1

𝑋

𝐵𝑛 𝐵𝑛+1

𝑌 .

𝑓𝑛

𝑎𝑛

𝑖𝑛 𝑓𝑛+1
𝑖𝑛+1

𝑏𝑛

𝑖′
𝑛 𝑖′

𝑛+1

48

Proof. The data is obtained from the computation rules stated in Lemma 3.2.8.
The commuting squares are kept as-is, which causes the unexpected change of
orientation — the computation rules provide a homotopy between the cocones
coconeℕ-map

𝑐
(𝑓∞) and precomp-homℕ(𝑓), not the other way around.

The type of prisms as above is equivalent to the type of coherences of ho-
motopies coconeℕ-map

𝑐
(𝑓∞) ∼ precomp-homℕ(𝑓) by mechanical homotopy

algebra.

Lemma 3.2.29. The map fmap-homℕ preserves identity morphisms. That is to say,
given a sequential diagram 𝒜 and its colimit 𝑋, the identity morphism id ∶ 𝒜 → 𝒜
induces the map id∞ ∶ 𝑋 → 𝑋, which is homotopic to the identity map id ∶ 𝑋 → 𝑋.

Proof. By Lemma 3.2.8, the map id∞ is the unique map such that the cocone
coconeℕ-map(id∞) is homotopic to the cocone precomp-homℕ(id). Hence to
show that id∞ ∼ id, it suffices to show that coconeℕ-map(id) is homotopic to
precomp-homℕ(id). In other words, the goal is to provide a homotopy

𝐴𝑛 𝐴𝑛+1

𝑋

𝑋

𝑎𝑛

𝑖𝑛 𝑖𝑛+1

id

∼

𝐴𝑛 𝐴𝑛+1

𝐴𝑛 𝐴𝑛+1

𝑋.

𝑎𝑛

id id
𝑎𝑛

𝑖𝑛 𝑖𝑛+1

The homotopy on maps is satisfied by refl-htpy ∶ 𝑖𝑛 ∼ 𝑖𝑛, and for coherences
we need to give

𝛼𝑛 ∶ ((id ⋅𝑙𝐻𝑛) •ℎ refl-htpy) ∼ (𝐻𝑛 •ℎ refl-htpy),

which follows from the left unit law of whiskering by id.

Lemma 3.2.30. The map fmap-homℕ preserves composition, in the sense that for
morphisms 𝑓 ∶ 𝒜 → ℬ and 𝑔 ∶ ℬ → 𝒞, colimits 𝑐 ≐ (𝑖, 𝐻) ∶ coconeℕ(𝒜, 𝑋) and
𝑐′ ≐ (𝑖′, 𝐻′) ∶ coconeℕ(ℬ, 𝑌) and a cocone 𝑐″ ≐ (𝑖″, 𝐻″) ∶ coconeℕ(𝒞, 𝑍), there is
a homotopy (𝑔 ∘ 𝑓)∞ ∼ (𝑔∞ ∘ 𝑓∞).

Proof. As in the identity case, it suffices to give a homotopy of cocones

coconeℕ-map(𝑔∞ ∘ 𝑓∞) ∼ precomp-homℕ(𝑔 ∘ 𝑓).

This is equivalent to providing a family of commuting squares

𝐴𝑛 𝐶𝑛

𝑋 𝑍

𝑔𝑛∘𝑓𝑛

𝑖𝑛 𝑖″
𝑛

𝑔∞∘𝑓∞

and fitting them into a family of commuting prisms

49

𝐴𝑛 𝐴𝑛+1

𝑋

𝐶𝑛 𝐶𝑛+1

𝑍.

𝑔𝑛∘𝑓𝑛

𝑎𝑛

𝑔𝑛+1∘𝑓𝑛+1

𝑐𝑛

𝑖″
𝑛 𝑖″

𝑛+1

𝑔∞∘𝑓∞

Since 𝑓∞ and 𝑔∞ are both constructed from morphisms of sequential dia-
grams, they come equipped with their respective homotopies

𝐴𝑛 𝐵𝑛

𝑋 𝑌

𝑓𝑛

𝑖𝑛 𝑖′
𝑛

𝑓∞

and
𝐵𝑛 𝐶𝑛

𝑌 𝑍,

𝑔𝑛

𝑖′
𝑛 𝑖″

𝑛

𝑔∞

and the prisms

𝐴𝑛 𝐴𝑛+1

𝑋

𝐵𝑛 𝐵𝑛+1

𝑌

𝑓𝑛

𝑎𝑛

𝑖𝑛 𝑓𝑛+1
𝑖𝑛+1

𝑏𝑛

𝑖′
𝑛 𝑖′

𝑛+1

𝑓∞
and

𝐵𝑛 𝐵𝑛+1

𝑌

𝐶𝑛 𝐶𝑛+1

𝑍.

𝑔𝑛

𝑏𝑛

𝑖′
𝑛 𝑔𝑛+1𝑖′

𝑛+1

𝑐𝑛

𝑖″
𝑛 𝑖″

𝑛+1

𝑔∞

Putting the squares side-by-side and stacking the prisms atop each other
gives the desired homotopy.

The last propertywewill need is that taking a sequential colimit also extends
to an action on homotopies.

Definition 3.2.31. Given two sequential diagrams 𝒜≐(𝐴, 𝑎) and ℬ≐(𝐵, 𝑏), and
two morphisms 𝑓 ≐ (𝑖, 𝐻), 𝑔 ≐ (𝑖′, 𝐻′) ∶ 𝒜 → ℬ, a homotopy between 𝑓 and 𝑔 is
a pair (𝐾, 𝛼) consisting of a family of homotopies

𝐾 ∶ (𝑛 ∶ ℕ) → 𝑖𝑛 ∼ 𝑖′
𝑛

and a family of commuting squares of homotopies indexed by 𝑛 ∶ ℕ

𝑏𝑛 ∘ 𝑖𝑛 𝑏𝑛 ∘ 𝑖′
𝑛

𝑖𝑛+1 ∘ 𝑎𝑛 𝑖′
𝑛+1 ∘ 𝑎𝑛.

𝑏𝑛⋅𝑙𝐾𝑛

𝐻𝑛 𝐻′
𝑛

𝐾𝑛+1⋅𝑟𝑎𝑛

We write 𝑓 ∼ 𝑔 for the type of homotopies between 𝑓 and 𝑔.

Lemma 3.2.32. For any two morphisms of sequential diagrams 𝑓, 𝑔 ∶ 𝒜 → ℬ, there is
an equivalence

htpy-eq-homℕ ∶ (𝑓 = 𝑔) ≃ (𝑓 ∼ 𝑔).

50

Lemma 3.2.33. Taking sequential colimits of sequential diagrams preserves homo-
topies. Specifically, given sequential diagrams 𝒜, ℬ and morphisms 𝑓, 𝑔 ∶ 𝒜 → ℬ,
there is a map

hmap-homℕ ∶ (𝑓 ∼ 𝑔) → (𝑓∞ ∼ 𝑔∞).

Proof. Turn the homotopy 𝐻 ∶ 𝑓 ∼ 𝑔 into an identification of morphisms of se-
quential diagrams 𝐻′ ∶ 𝑓 = 𝑔, apply fmap-homℕ on the identification to get
𝐻″ ∶ 𝑓∞ = 𝑔∞, which induces a homotopy of type 𝑓∞ ∼ 𝑔∞.

3.2.2 Colimits of shifted sequential diagrams
Sequential diagrams consist of an infinite amount of data, represented by an
infinite sequence of types and maps between them. It is natural to ask how
much individual vertices of that sequence influence the resulting colimit, and
onemight expect that removing a vertex from the sequence does not change the
colimit at all. That is in fact true for any finite amount of vertices removed from
the sequence. Here we limit ourselves to removing vertices from the beginning
of the sequence, which is described by an operation called “shifting”.

A shift of a sequential diagram 𝒜 is the sequential diagram consisting of the
types and maps shifted by one to the left. It is denoted 𝒜[1]. This shifting can
be iterated for any natural number 𝑘; then the resulting sequential diagram is
denoted 𝒜[𝑘].

Similarly, a shift of a morphism of sequential diagrams is a morphism from
the shifted domain into the shifted codomain. In symbols, given a morphism
𝑓 ∶ 𝒜 → ℬ, we have 𝑓[𝑘] ∶ 𝒜[𝑘] → ℬ[𝑘].

We also define shifts of cocones and homotopies of cocones, which can ad-
ditionally be “unshifted”.

Importantly the type of cocones under a sequential diagram is equivalent
to the type of cocones under its shift, as we will show by proving that shifting
and unshifting are inverse operations. It follows that the sequential colimit of a
shifted sequential diagram is equivalent to the colimit of the original diagram.

In the later chapters we only ever need to shift by one, but arbitrary shifts are
used in the statement and proof of the main theorem of Sojakova; van Doorn;
Rijke [17], which they use to prove connectivity and truncation results for se-
quential colimits, which in turn is necessary for proving some of the applica-
tions of the zigzag construction of identity types of pushouts, studied by Wärn
[19].

Construction 3.2.34. Given a sequential diagram 𝒜 ≐ (𝐴, 𝑎), construct its shift
by one as the diagram

𝐴1 𝐴2 ⋯ .𝑎1 𝑎2

Call this 𝒜[1].
Then construct arbitrary shifts by induction

𝒜[0] ∶= 𝒜
𝒜[𝑘 + 1] ∶= (𝒜[𝑘])[1].

51

Remark 3.2.35. The constructions of shifts are defined by first defining a shift
by one, and then recursively shifting by one according to the argument 𝑘. An
alternative would be to shift all data using addition on the natural numbers.

However, in our setting addition computes only on one side, so we have a
choice to make: given a number 𝑘 to shift by, do we define the 𝑛-th level of the
shifted structure to be the (𝑛 + 𝑘)-th, or (𝑘 + 𝑛)-th level of the original?

The former runs into issues already when defining the shifted sequence,
since 𝑎𝑛+𝑘 has the type 𝐴𝑛+𝑘 → 𝐴(𝑛+𝑘)+1, but we need a function of type
𝐴𝑛+𝑘 → 𝐴(𝑛+1)+𝑘, which forces us to introduce a transport.

On the other hand, the latter requires transport when proving anything by
induction on 𝑘 and does not satisfy the judgmental equality 𝒜[0] ≐ 𝒜, because
𝐴(𝑘+1)+𝑛 is not 𝐴(𝑘+𝑛)+1 and 𝐴0+𝑛 is not 𝐴𝑛, and it requires more infrastructure
for working with horizontal compositions in sequential diagrams to be formal-
ized in terms of addition.

To contrast, defining the operations by induction does satisfy 𝒜[0] ≐ 𝒜, it
computeswhenproving properties by induction, which is the expected primary
use-case, and no further infrastructure is necessary.

Construction 3.2.36. Given sequential diagrams 𝒜, ℬ and amorphism between
them 𝐹 ≐ (𝑓, 𝐻) ∶ 𝒜 → ℬ, construct its shift by one as the morphism

𝐴1 𝐴2 ⋯

𝐵1 𝐵2 ⋯ ,

𝑎1

𝑓1

𝑎2

𝑓2 ⋯

𝑏1

𝐻1

𝑏2

and call it 𝐹[1] ∶ 𝒜[1] → ℬ[1].
Construct further shifts by induction

𝐹[0] ∶= 𝐹 ∶ 𝒜[0] → ℬ[0]
𝐹 [𝑘 + 1] ∶= (𝐹 [𝑘])[1] ∶ 𝒜[𝑘 + 1] → ℬ[𝑘 + 1].

Construction 3.2.37. Given a cocone 𝑐 ∶ coconeℕ(𝒜, 𝑋), construct its shift by
one as the cocone

𝐴1 𝐴2 𝐴3 ⋯

𝑋,

𝑎1

𝑖1

𝑎2

𝑖2
𝐻1

𝑎3

𝑖3
⋯𝐻2

call it 𝑐[1] ∶ coconeℕ(𝒜[1], 𝑋).
Construct arbitrary shifts by induction

𝑐[0] ∶= 𝑐 ∶ coconeℕ(𝒜[0], 𝑋)
𝑐[𝑘 + 1] ∶= (𝑐[𝑘])[1] ∶ coconeℕ(𝒜[𝑘 + 1], 𝑋).

Cocones can be “unshifted” as well. If shifting corresponds to forgetting
data, then unshifting corresponds to recovering forgotten data. The data can be
recovered, because the missing data has the type Σ(𝑖 ∶ 𝐴0 → 𝑋). (𝑖 ∼ 𝑖0 ∘ 𝑎0),
which is contractible at (𝑖0 ∘ 𝑎0, refl-htpy).

52

Construction 3.2.38. Given a cocone 𝑐 ∶ coconeℕ(𝒜[1], 𝑋), i.e. a diagram with
the shape

𝐴1 𝐴2 𝐴3 ⋯

𝑋,

𝑎1

𝑖0

𝑎2

𝑖1
𝐻0

𝑎3

𝑖2
⋯𝐻1

construct its unshift by one as the cocone

𝐴0 𝐴1 𝐴2 ⋯

𝑋,

𝑎0

𝑖0∘𝑎0

𝑎1

𝑖0

𝑎2

𝑖1
⋯𝐻0

where the left triangle is refl-htpy ∶ (𝑖0 ∘ 𝑎0) ∼ (𝑖0 ∘ 𝑎0), and denote it
𝑐[−1] ∶ coconeℕ(𝒜, 𝑋).

Then inductively define arbitrary unshifts

𝑐[−0] ∶= 𝑐 ∶ coconeℕ(𝒜, 𝑋) for 𝑐 ∶ coconeℕ(𝒜[0], 𝑋)
𝑐[−(𝑘 + 1)] ∶= 𝑐[−1][−𝑘] ∶ coconeℕ(𝒜, 𝑋) for 𝑐 ∶ coconeℕ(𝒜[𝑘 + 1], 𝑋).

Remark 3.2.39. One might expect that, following the pattern of shifts, the in-
ductive case should be 𝑐[−𝑘][−1]. Note, however, that the construction only
provides a way to unshift a cocone under 𝒜[𝑛] by 𝑛; since the cocone 𝑐 in the
inductive case is under 𝒜[𝑘][1], we first need to unshift by 1 to get 𝑐[−1] under
𝒜[𝑘], and only then we can unshift by 𝑘 to get 𝑐[−1][−𝑘] under 𝒜.

Shifting and unshifting homotopies will also be required to show that shift-
ing and unshifting cocones are inverses to each other.

Construction 3.2.40. Given cocones 𝑐 ≐ (𝑖, 𝐻) and 𝑐′ ≐ (𝑖′, 𝐻′) under 𝒜 on 𝑋,
and a homotopy Κ ≐ (𝐾, 𝛼) ∶ 𝑐 ∼ 𝑐′, construct the shift by one of Κ to be the
homotopy between 𝑐[1] and 𝑐′[1] consisting of (𝐾′, 𝛼′), where

𝐾′ ∶= (𝜆𝑛 → 𝐾𝑛+1) ∶ 𝑖𝑛+1 ∼ 𝑖′
𝑛+1

𝛼′ ∶= (𝜆𝑛 → 𝛼𝑛+1) ∶ (𝐻𝑛+1 •ℎ (𝐾𝑛+2 ⋅𝑟 𝑎𝑛+1)) ∼ (𝐾𝑛+1 •ℎ 𝐻′
𝑛+1).

Denote it by Κ[1].
Then define other shifts by induction

Κ[0] ∶= Κ ∶ 𝑐[0] ∼ 𝑐′[0]
Κ[𝑘 + 1] ∶= (Κ[𝑘])[1] ∶ 𝑐[𝑘 + 1] ∼ 𝑐′[𝑘 + 1].

Similarly to unshifting cocones, we can recover the first homotopy and co-
herence to unshift a homotopy of cocones.

Construction 3.2.41. Given cocones 𝑐 ≐ (𝑖, 𝐻) and 𝑐′ ≐ (𝑖′, 𝐻′) under 𝒜[1] on
𝑋, and a homotopy Κ ≐ (𝐾, 𝛼) ∶ 𝑐 ∼ 𝑐′, we construct the unshift by one of Κ,
which is a homotopy Κ[−1] ∶ 𝑐[−1] ∼ 𝑐′[−1]. The input data has the form

53

𝐴𝑛+1 𝐴𝑛+2

𝑋

𝑎𝑛+1

𝑖𝑛 𝑖𝑛+1

𝐻𝑛 ∼
𝐴𝑛+1 𝐴𝑛+2

𝑋,

𝑎𝑛+1

𝑖′
𝑛 𝑖′

𝑛+1

𝐻′
𝑛

which we need to turn into a homotopy

𝐴0 𝐴1 𝐴2

𝑋,

𝑎0

𝑖0∘𝑎0

𝑎1

𝑖0 𝑖1
⋯

𝐻0 ∼
𝐴0 𝐴1 𝐴2

𝑋.

𝑎0

𝑖′
0∘𝑎0

𝑎1

𝑖′
0 𝑖1

⋯
𝐻′

0

Define Κ[−1] ≐ (𝐾′, 𝛼′) by case splitting on the index

𝐾′
0 ∶= 𝐾0 ⋅𝑟 𝑎0 ∶ (𝑖0 ∘ 𝑎0) ∼ (𝑖′

0 ∘ 𝑎0)
𝐾′

𝑛+1 ∶= 𝐾𝑛 ∶ 𝑖𝑛 ∼ 𝑖′
𝑛

𝛼′
0 ∶= runit-htpy−1 ∶ (refl-htpy •ℎ(𝐾0 ⋅𝑟 𝑎0)) ∼ ((𝐾0 ⋅𝑟 𝑎0) •ℎ refl-htpy)

𝛼′
𝑛+1 ∶= 𝛼𝑛 ∶ (𝐻𝑛 •ℎ (𝐾𝑛+1 ⋅𝑟 𝑎𝑛)) ∼ (𝐾𝑛 •ℎ 𝐻′

𝑛).

Then define arbitrary unshifts by induction on 𝑘

Κ[0] ∶= Κ ∶ 𝑐[−0] ∼ 𝑐′[−0]
Κ[−(𝑘 + 1)] ∶= (Κ[−1])[−𝑘] ∶ 𝑐[−(𝑘 + 1)] ∼ 𝑐′[−(𝑘 + 1)].

Lemma 3.2.42. For every sequential diagram 𝒜 and a natural number 𝑘, the map

(−)[𝑘] ∶ coconeℕ(𝒜, 𝑋) → coconeℕ(𝒜[𝑘], 𝑋)

is an equivalence, with the inverse

(−)[−𝑘] ∶ coconeℕ(𝒜[𝑘], 𝑋) → coconeℕ(𝒜, 𝑋)

Proof. The goal is to show that for any 𝑘, we have 𝑐[−𝑘][𝑘] = 𝑐 and 𝑐[𝑘][−𝑘] = 𝑐,
for appropriately typed cocones 𝑐.

First note that for any cocone 𝑐 ∶ cocone(𝒜[1], 𝑋), 𝑐[−1][1] computes to the
cocone 𝑐, because 𝑐[−1] is the cocone 𝑐 with synthesized data at the front, and
𝑐[−1][1] forgets the new data. Inductively, we define the homotopy 𝑐[−𝑘][𝑘] ∼ 𝑐
for all 𝑘. We have 𝑐[−0][0] ∼ 𝑐 by the reflexive homotopy, and

𝑐[−(𝑘 + 1)][𝑘 + 1] ≐ 𝑐[−1][−𝑘][𝑘][1]
∼ 𝑐[−1][1] by shifting the induction hypothesis

IH ∶ (𝑐[−1])[−𝑘][𝑘] ∼ 𝑐[−1]
≐ 𝑐.

Since homotopies of cocones characterize their identity types, we obtain the
desired identifications 𝑐[−𝑘][𝑘] = 𝑐.

For the other direction, we begin by giving a homotopy 𝑐∼𝑐[1][−1] for every
cocone 𝑐 ∶ coconeℕ(𝒜, 𝑋). We choose this orientation of the homotopy, because

54

the first component of the homotopy now needs a proof of 𝑖0 ∼𝑖1 ∘𝑎0, which we
can supply directly by 𝐻0. Define the homotopy of cocones by case splitting as

𝐾0 ∶= 𝐻0 ∶ 𝑖0 ∼ 𝑖1 ∘ 𝑎𝑛

𝐾𝑛+1 ∶= refl-htpy ∶ 𝑖𝑛+1 ∼ 𝑖𝑛+1

𝛼0 ∶= refl-htpy ∶ (𝐻0 •ℎ refl-htpy) ∼ (𝐻0 •ℎ refl-htpy)
𝛼𝑛+1 ∶= runit-htpy ∶ (𝐻𝑛+1 •ℎ refl-htpy) ∼ (refl-htpy •ℎ𝐻𝑛+1).

Then extend the homotopy by induction to all 𝑘. We again have 𝑐 ∼ 𝑐[0][−0] by
the reflexivity homotopy, and in the inductive case we compose the homotopies

𝑐 ∼ 𝑐[𝑘][−𝑘] by the inductive hypothesis
∼ 𝑐[𝑘][1][−1][−𝑘] by unshifting the homotopy 𝑐[𝑘] ∼ 𝑐[𝑘][1][−1] by 𝑘
≐ 𝑐[𝑘 + 1][−(𝑘 + 1)].

This family of homotopies can be made into a family of identifications, and in-
verted to get the required 𝑐[𝑘][−𝑘] = 𝑐.

Theorem 3.2.43. Given a sequential diagram 𝒜 and its colimit 𝑐 ∶ coconeℕ(𝒜, 𝑋),
the cocone 𝑐[𝑘] ∶ coconeℕ(𝒜[𝑘], 𝑋) is a sequential colimit of the diagram 𝒜[𝑘], for any
natural number 𝑘.

Proof. We construct a commuting triangle

(𝑋 → 𝑌) coconeℕ(𝒜, 𝑌)

coconeℕ(𝒜[𝑘], 𝑌),

coconeℕ-map𝑐
≃

coconeℕ-map𝑐[𝑘] (−)[𝑘]
≃

where the right map is an equivalence by Lemma 3.2.42, and the top map is an
equivalence by assumption. The it follows that the left map is an equivalence.

The triangle is constructed by induction. Note that it commutes by refl-htpy
for the case 𝑘 = 0, since then the right map is an identity and the cocone maps
are the same map, and also for the case 𝑘 = 1, since then both paths map a
function ℎ ∶ 𝑋 → 𝑌 to the cocone (𝜆𝑛 → ℎ ∘ 𝑖𝑛, 𝜆𝑛 → ℎ ⋅𝑙 𝐻𝑛). To show that the
triangle commutes for 𝑘 + 1, compose it out of the smaller triangles

(𝑋 → 𝑌) coconeℕ(𝒜, 𝑌)

coconeℕ(𝒜[𝑘], 𝑌)

coconeℕ(𝒜[𝑘 + 1], 𝑌),

coconeℕ-map𝑐

coconeℕ-map𝑐[𝑘]

coconeℕ-map𝑐[𝑘+1]

(−)[𝑘]

(−)[𝑘+1](−)[1]

where the top one is the induction hypothesis, the left one is the case for 𝑘 = 1,
and the right one is the definition of (−)[𝑘 + 1].

55

To conclude this section, we show that there are inclusion morphisms of
sequential diagrams 𝒜 → 𝒜[𝑘], which induce the identity map on the colimit.
Construction 3.2.44. Given a sequential diagram 𝒜 ≐ (𝐴, 𝑎), construct the mor-
phism of sequential diagrams

incl-homℕ[1] ∶ 𝒜 → 𝒜[1]
as the morphism

𝑓𝑛 ∶= 𝑎𝑛 ∶ 𝐴𝑛 → 𝐴𝑛+1

𝐻𝑛 ∶= refl-htpy ∶ (𝑎𝑛+1 ∘ 𝑎𝑛) ∼ (𝑎𝑛+1 ∘ 𝑎𝑛).
Diagrammatically, the morphism can be drawn as

𝐴0 𝐴1 ⋯

𝐴1 𝐴2 ⋯ .

𝑎0

𝑎0

𝑎1

𝑎1 ⋯

𝑎1 𝑎2

Extend the morphism to
incl-homℕ[𝑘] ∶ 𝒜 → 𝒜[𝑘]

for any natural number 𝑘 by induction, where incl-homℕ[0] ∶ 𝒜 → 𝒜[0] is the
identity morphism, and incl-homℕ[𝑘 + 1] ∶ 𝒜 → 𝒜[𝑘 + 1] is the composition of
incl-homℕ[𝑘] ∶ 𝒜 → 𝒜[𝑘] and then incl-homℕ[1] ∶ 𝒜[𝑘] → 𝒜[𝑘][1].

These morphisms offer another way of unshifting cocones. Specifically, one
can precompose a cocone 𝑐 ∶ coconeℕ(𝒜[𝑘], 𝑋) with the above morphism
incl-homℕ[𝑘] ∶ 𝒜 → 𝒜[𝑘] to get a cocone 𝑐′ ∶ coconeℕ(𝒜, 𝑋). We show that
these two constructions result in homotopic cocones. We limit ourselves to the
case 𝑘 = 1, as we do not need the general case in further development.
Lemma 3.2.45. Given a cocone 𝑐 ≐ (𝑖, 𝐻) ∶ coconeℕ(𝒜[1], 𝑋), there is a homotopy
of cocones

𝑐[−1] ∼ precomp-homℕ𝒜
𝑐

(incl-homℕ[1]).
Proof. We need to show a homotopy between the cocones

𝐴0 𝐴1 𝐴2

𝑋

𝑎0

𝑖0∘𝑎0

𝑎1

𝑖0 𝑖1
⋯ and

𝐴𝑛 𝐴𝑛+1

𝐴𝑛+1 𝐴𝑛+2

𝑋.

𝑎𝑛

𝑎𝑛 𝑎𝑛+1

𝑎𝑛+1

𝑖𝑛 𝑖𝑛+1

This homotopy can be constructed by induction on 𝑛 as
𝐾0 ∶= refl-htpy ∶ (𝑖0 ∘ 𝑎0) ∼ (𝑖0 ∘ 𝑎0)
𝐾𝑛+1 ∶= 𝐻𝑛 ∶ 𝑖𝑛 ∼ (𝑖𝑛+1 ∘ 𝑎𝑛+1)
𝛼0 ∶= runit-htpy−1 ∶ (refl-htpy •ℎ𝐻0) ∼ (refl-htpy •ℎ𝐻𝑛 •ℎ refl-htpy)
𝛼𝑛+1 ∶= 𝐻𝑛 ⋅𝑙 runit-htpy−1 ∶ (𝐻𝑛 •ℎ (𝐻𝑛+1 ⋅𝑟 𝑎𝑛+1))

∼ (𝐻𝑛 •ℎ (𝐻𝑛+1 ⋅𝑟 𝑎𝑛+1) •ℎ refl-htpy).

56

Corollary 3.2.46. For any cocone 𝑐 ∶ coconeℕ(𝒜, 𝑋), there is a homotopy

𝑐 ∼ precomp-homℕ
𝑐[1]

(incl-homℕ[1]).

Proof. Compose the homotopies 𝑐 ∼ 𝑐[1][−1] from Lemma 3.2.42 and 𝑐[1][−1] ∼
precomp-homℕ

𝑐[1]
(incl-homℕ[1]) from the above lemma applied to 𝑐[1].

Lemma 3.2.47. Assume a sequential diagram 𝒜 with its colimit 𝑐 ∶ coconeℕ(𝒜, 𝑋).
Then for any natural number 𝑘, the morphism incl-homℕ[𝑘] ∶ 𝒜 → 𝒜[𝑘] induces
a map out of 𝑋. If we consider 𝑐[𝑘] ∶ coconeℕ(𝒜[𝑘], 𝑋) as the colimit of 𝒜[𝑘] by
Theorem 3.2.43, this map’s codomain is 𝑋. The induced map incl-homℕ[𝑘]∞ ∶ 𝑋 →
𝑋 is homotopic to the identity map id ∶ 𝑋 → 𝑋.

Proof. Proceed by induction on 𝑘. For 𝑘 = 0, note that the morphism
incl-homℕ[0] ∶ 𝒜 → 𝒜[0] is the identity morphism, hence it is mapped to the
identity by Lemma 3.2.29.

For the successor case 𝑘+1, the inclusionmorphism computes to the compo-
sition 𝒜 → 𝒜[𝑘′] → 𝒜[𝑘][1]. By Lemma 3.2.30, passing to the colimit preserves
composition, so there is a homotopy

incl-homℕ[𝑘 + 1]∞ ∼ incl-homℕ[1]∞ ∘ incl-homℕ[𝑘]∞.

The map incl-homℕ[𝑘]∞ is homotopic to the identity map by the inductive hy-
pothesis, so it remains to show that incl-homℕ[1] ∶ 𝒜[𝑘] → 𝒜[𝑘 + 1] induces the
identity map. The map incl-homℕ[1]∞ ∶ 𝑋 → 𝑋 is constructed using the uni-
versal property of 𝑐[𝑘] being the colimit of 𝒜[𝑘], by the cocone
precomp-homℕ

𝑐[𝑘+1]
(incl-homℕ[1]). By Corollary 3.2.46 this cocone is homo-

topic to the cocone 𝑐[𝑘]. Hence it suffices to show that the map induced by the
cocone 𝑐[𝑘] using the universal property of 𝑐[𝑘] is the identity map, which is
Lemma 3.2.9.

3.2.3 Descent property and flattening lemma
Weprove the flattening lemma phrasedwith descent data, which can be seen as
an elementary case of the main theorem from [17]. The full theorem could rea-
sonably be called “generalized flattening lemma”, as it shows commutativity of
taking the total space and sequential colimit of not just a type family induced
by descent data, but a more general case where one may take an arbitrary de-
pendent sequential diagram, and generate the descent data by taking colimits
of increasingly more shifted total sequential diagrams.

Definition 3.2.48. Given a sequential diagram 𝒜 ≐ (𝐴, 𝑎), define the type of
descent data over 𝒜 to be the type of pairs (𝐵, 𝑏), where 𝐵 is a family of type
families

𝐵 ∶ (𝑛 ∶ ℕ) → 𝐴𝑛 → 𝒰
and 𝑏 is a family of fiberwise equivalences

𝑏 ∶ (𝑛 ∶ ℕ)(𝑥 ∶ 𝐴𝑛) → 𝐵𝑛(𝑥) ≃ 𝐵𝑛+1(𝑎𝑛𝑥).

We write DDℕ(𝒜) for the type of descent data over 𝒜.

57

Remark 3.2.49. There is a principledway of looking at descent data over sequen-
tial diagrams — as equifibered sequential diagrams. A fibered (or dependent)
sequential diagram consists of type families 𝐵𝑛 over 𝐴𝑛’s and connecting maps
𝑏𝑛 over 𝑎𝑛’s. An equifibered sequential diagram is one in which all connecting
maps are equivalences.

In fact, all descent data arise as dependent diagrams with maps replaced by
equivalences. Sometimes the structure may be simplified by replacing a span of
fiberwise equivalenceswith a single fiberwise equivalence. To take the example
of pushout, an equifibered span diagram consists of the data¹

𝑃𝑆 ∶ 𝑆 → 𝒰
𝑃𝐴 ∶ 𝐴 → 𝒰
𝑃𝐵 ∶ 𝐵 → 𝒰
𝑃𝑓 ∶ (𝑠 ∶ 𝑆) → 𝑃𝑆(𝑠) ≃ 𝑃𝐴(𝑓𝑠)
𝑃𝑔 ∶ (𝑠 ∶ 𝑆) → 𝑃𝑆(𝑠) ≃ 𝑃𝐵(𝑔𝑠).

The type of equifibered span diagrams is equivalent to the type of descent
data over span diagrams, since we can contract away the pair (𝑃𝑆, 𝑃𝑓). The
simplification reduces the amount of data we have to track and make coherent,
at the expense of introducing an arbitrary direction — there is no reason to
prefer the direction 𝑃𝐴(𝑓𝑠) ≃ 𝑃𝐵(𝑔𝑠) over 𝑃𝐵(𝑔𝑠) ≃ 𝑃𝐴(𝑓𝑠).

Sequential diagrams do not contain any spans, so there is no simplification
to be made.

Construction 3.2.50. Given a sequential diagram 𝒜 ≐ (𝐴, 𝑎) and a cocone
𝑐 ≐ (𝑖, 𝐻) ∶ coconeℕ(𝒜, 𝑋), construct the map

ddℕ-fam𝑐 ∶ (𝑋 → 𝒰) → DDℕ(𝒜)

which sends a type family 𝐵 to the descent data

(𝜆𝑛, 𝑥 → 𝐵(𝑖𝑛𝑥)) ∶ (𝑛 ∶ ℕ) → 𝐴𝑛 → 𝒰
(𝜆𝑛, 𝑥 → tr𝐵(𝐻𝑛𝑥)) ∶ (𝑛 ∶ ℕ)(𝑥 ∶ 𝐴𝑛) → 𝐵(𝑖𝑛𝑥) ≃ 𝐵(𝑖𝑛+1(𝑎𝑛𝑥)).

Definition 3.2.51. Given a sequential diagram 𝒜 ≐ (𝐴, 𝑎) and a cocone
𝑐 ≐ (𝑖, 𝐻) ∶ coconeℕ(𝒜, 𝑋), a type family with descent data is a triple
(𝐵∞, 𝐵′, 𝑒′), where 𝐵∞ ∶ 𝑋 → 𝒰 is a type family, 𝐵′ ≐(𝐵, 𝑏) ∶ DD(𝒜) is descent
data over 𝒜, and 𝑒′ ≐ (𝑒, 𝐾) is an equivalence of descent data consisting of a
family of equivalences

𝑒 ∶ (𝑛 ∶ ℕ)(𝑥 ∶ 𝐴𝑛) → 𝐵∞(𝑖𝑛𝑥) ≃ 𝐵𝑛(𝑥)

and a family of commuting squares indexed by 𝑛 and 𝑥 ∶ 𝐴𝑛

𝐵∞(𝑖𝑛𝑥) 𝐵𝑛(𝑥)

𝐵∞(𝑖𝑛+1(𝑎𝑛𝑥)) 𝐵𝑛+1(𝑎𝑛𝑥).

𝑒𝑛(𝑥)

tr𝐵∞(𝐻𝑛𝑥) 𝑏𝑛(𝑥)

𝑒𝑛+1(𝑎𝑛𝑥)

¹There is a slight inaccuracy caused by universe levels — the type families 𝑃𝐴, 𝑃𝐵 and 𝑃𝑆
should be allowed to range over different universes 𝒰, 𝒱, 𝒲. This can be formally rectified by
appropriately raising to the common universe 𝒰 ⊔ 𝒱 ⊔ 𝒲.

58

We write 𝑒′ ∶ 𝐵∞ ≈ 𝐵′ for the triple (𝐵∞, 𝐵′, 𝑒′).

Theorem 3.2.52 (Descent property of sequential colimits). Consider a sequential
diagram 𝒜 ≐ (𝐴, 𝑎) and its sequential colimit 𝑐 ∶ coconeℕ(𝒜, 𝑋). Then the map
ddℕ-fam𝑐 is an equivalence.

Proof. We construct a commuting triangle of maps

(𝑋 → 𝑌) coconeℕ(𝒜, 𝒰)

DDℕ(𝒜).

coconeℕ-map𝑐
≃

ddℕ-fam𝑐
≃

The right equivalence sends (𝐵, 𝐻) to (𝐵, 𝜆𝑛, 𝑥 → equiv-eq(𝐻𝑛(𝑥))), and the
triangle commutes by function extensionality and Lemma 1.0.11.

Corollary 3.2.53. Given a sequential diagram 𝒜 ≐ (𝐴, 𝑎), its colimit 𝑐 ≐ (𝑖, 𝐻) on 𝑋,
and descent data (𝐵, 𝑏) ∶ DDℕ(𝒜), there is a unique type family 𝐵∞ ∶ 𝑋 → 𝒰 and an
equivalence of descent data 𝑒 ∶ 𝐵∞ ≈ (𝐵, 𝑏).

Construction 3.2.54. Given a sequential diagram 𝒜 ≐ (𝐴, 𝑎) and descent data
(𝐵, 𝑏) ∶ DDℕ(𝒜), take the total sequential diagram to be the diagram

(𝜆𝑛 → Σ𝐴𝑛𝐵𝑛) ∶ ℕ → 𝒰
(𝜆𝑛 → tot𝑎𝑛

(𝑏𝑛)) ∶ (𝑛 ∶ ℕ) → (Σ𝐴𝑛𝐵𝑛) → (Σ𝐴𝑛+1𝐵𝑛+1).

Construction 3.2.55. Given a sequential diagram 𝒜 ≐ (𝐴, 𝑎), a cocone 𝑐 ≐ (𝑖, 𝐻)
on 𝑋, and a family with descent data (𝑒, 𝐾) ∶ (𝐵, 𝑏) ≈ 𝐵∞, construct the total
cocone under the total sequential diagram

Σ𝐴𝑛𝐵𝑛 Σ𝐴𝑛+1𝐵𝑛+1

Σ𝑋𝐵∞

tot𝑎𝑛(𝑏𝑛)

tot𝑖𝑛(𝑒𝑛) tot𝑖𝑛+1(𝑒𝑛+1)

which commutes by the homotopy 𝐻′ given at 𝑥 ∶ 𝐴𝑛, 𝑦 ∶ 𝐵𝑛(𝑎) by

𝐻′
1 ∶= 𝐻𝑛(𝑥) ∶ 𝑖𝑛(𝑥) = 𝑖𝑛+1(𝑎𝑛𝑥)

𝐻′
2 ∶= 𝐾𝑛(𝑥, 𝑦) ∶ tr𝐵∞

(𝐻𝑛𝑥)(𝑒𝑛(𝑦)) = 𝑒𝑛+1(𝑏𝑛(𝑥, 𝑦)).

We proceed similarly to the proof of the flattening lemma with descent data
for pushouts — we split the proof into two steps, one showing it holds for a
type family 𝑃 ∶ 𝑋 → 𝒰 and its induced descent data, and one generalizing it to
arbitrary families with descent data.

Theproofs lean on technical results regardingpreservation of universal prop-
erties by equivalences of cocones and coforks (not to be confused with homo-
topies of cocones and coforks), which were introduced in the formalization but
we do not cover them in the thesis text. The precise statements and proofs of
those lemmas can be read off the attached Agda code.

59

Remark 3.2.56. The idea of those lemmas is that in the context of cocones under
span diagrams, a commuting cube whose vertical maps are equivalences may
be regarded as an equivalence of span diagrams and cocones under them. With
this perspective, Lemma 2.3.1 says being a pushout is preserved by equivalences
of cocones. Adapting it to coforks yields the concept of an equivalence of dou-
ble arrows and coforks under them, and the property of being a coequalizer
is preserved by such an equivalence, because equivalences of coforks induce
equivalences of the associated cocones. Going one step further, we get a notion
of equivalences of sequential diagrams and cocones under those, and being a
sequential colimit is preserved by equivalences of cocones, because they induce
equivalences of the associated coforks.

Lemma 3.2.57. Consider a sequential diagram 𝒜, its colimit 𝑐 ∶ cocone(𝒜, 𝑋) and
a type family 𝐵∞ ∶ 𝑋 → 𝒰. Then the total cocone of the family with descent data
id ∶ ddℕ-fam𝑐(𝐵∞) ≈ 𝐵∞ is a sequential colimit.

Proof. Similarly to the proof of the flattening lemma for coequalizers, we lever-
age the fact that sequential colimits correspond to certain coequalizers.

Write 𝑐 ≐ (𝑖, 𝐻). We construct an equivalence of coforks

Σ(𝑛 ∶ ℕ)(𝑥 ∶ 𝐴𝑛). 𝐵∞(𝑖𝑛𝑥) Σ(𝑛 ∶ ℕ)(𝑥 ∶ 𝐴𝑛). 𝐵∞(𝑖𝑛𝑥) Σ𝑋𝐵∞

Σ((𝑛, 𝑥) ∶ Σℕ𝐴). 𝐵∞(𝑖𝑛𝑥) Σ((𝑛, 𝑥) ∶ Σℕ𝐴). 𝐵∞(𝑖𝑛𝑥) Σ𝑋𝐵∞

tot+1(tot𝑎(−)
(tr𝐵∞(𝐻(−))))

id

assoc-Σ ≃

ind-Σ(tot𝑖(−)
(id))

assoc-Σ≃ id≃
tottot+1(𝑎(−))(tr𝐵∞(𝐻(−)))

totid(id) totind-Σ(𝑖)(id)

where the top cofork is the cofork associated to the total cocone, and on the
bottom is the total cofork of the cofork associated to 𝑐 and 𝐵∞. All the squares
commute by refl-htpy, so the coherence is a combination of unit laws for con-
catenation with refl-htpy and whiskering by id.

Since the bottom cofork is a coequalizer by the flattening lemma for coequal-
izers, the top cofork is also a coequalizer, from which it follows that the total
cocone is a sequential colimit.

Theorem 3.2.58 (Flattening lemma for sequential colimits). Given a sequential
colimit 𝑐 ∶ coconeℕ(𝒜, 𝑋) and a family with descent data (𝐵, 𝑏) ≈ 𝐵∞, the total
cocone is a sequential colimit.

Proof. Put 𝒜 ≐ (𝐴, 𝑎) and 𝑐 ≐ (𝑖, 𝐻). It suffices to show that there is an “equiv-
alence of cocones”

Σ𝐴𝑛𝐵𝑛 Σ𝐴𝑛+1𝐵𝑛+1

Σ𝑋𝐵∞

Σ𝐴𝑛(𝐵∞ ∘ 𝑖𝑛) Σ𝐴𝑛+1(𝐵∞ ∘ 𝑖𝑛+1)

Σ𝑋𝐵∞,

tot(𝑒𝑛)

tot𝑎𝑛(𝑏𝑛)

tot𝑖𝑛(𝑒𝑛) tot(𝑒𝑛+1)tot𝑖𝑛+1(𝑒𝑛+1)

tr𝐵∞(𝐻𝑛)

tot𝑖𝑛(id) tot𝑖𝑛+1(id)

id

60

where the bottom cocone is the total cocone of 𝐵∞ and its induced descent data,
and the top cocone is the total cocone of (𝐵, 𝑏) ≈ 𝐵∞. The vertical maps are
equivalences, and the prisms commute by a homotopy algebra argument simi-
lar to Lemma 2.3.6. The bottom cocone is a sequential colimit by Lemma 3.2.57,
so it follows that the top cocone is a sequential colimit.

61

62

Chapter 4

Partial proof of correctness of the
zigzag construction

Wärn [19] describes an explicit construction of identity types of pushouts. He
does so by fixing an element 𝑎0 ∶ 𝐴, and then defining type families 𝑎0 ⇝∞ 𝑎
and 𝑎0 ⇝∞ 𝑏, such that for any 𝑎 ∶ 𝐴 and 𝑏 ∶ 𝐵, there are equivalences

(inl(𝑎0) = inl(𝑎)) ≃ (𝑎0 ⇝∞ 𝑎)
(inl(𝑎0) = inr(𝑏)) ≃ (𝑎0 ⇝∞ 𝑏).

The type families are defined by gradual approximations of the identity
types, 𝑎0 ⇝𝑡 𝑎 and 𝑎0 ⇝𝑡+1 𝑏. If one thinks of the standard pushout 𝐴⊔𝑆 𝐵 as a
coproduct 𝐴+𝐵 with added “bridges” from 𝑓(𝑠) to 𝑔(𝑠), then 𝑎0 ⇝𝑡 𝑎 describes
the type of identifications between inl(𝑎0) and inl(𝑎), provided that we can pass
from the 𝐴 component to the 𝐵 component and back 𝑡 times, and similarly for
𝑎0 ⇝𝑡+1 𝑏. The full identity types are then constructed by removing the upper
bound on the number of steps, by taking the sequential colimit.

The two type families are related — if one can get from inl(𝑎0) to inl(𝑓𝑠) in
𝑡 crossings, then one can get from inl(𝑎0) to inr(𝑔𝑠) in 𝑡 + 1 crossings, and sim-
ilarly in reverse. We can formally encode this relationship in a structure called
a “zigzag” between sequential diagrams. We begin by defining general zigzags
of sequential diagrams and their behavior in the colimit. Then we define the
type families of approximations of identity types, and a zigzag between them.
At last, we present a partial proof that the construction satisfies the induction
principle of identity systems of pushouts from section 2.4. One coherence proof
remains unsolved. The construction andproof of correctness are presentedwith
emphasis on their encoding in the Agda proof assistant [2], which due to its
mutually inductive nature presented challenges to termination checking and
computation.

4.1 Zigzags between sequential diagrams
Definition 4.1.1. Given sequential diagrams 𝒜 ≐ (𝐴, 𝑎) and ℬ ≐ (𝐵, 𝑏), a zigzag
between them is a quadruple (𝑓, 𝑔, 𝑈, 𝐿), where 𝑓 and 𝑔 are families of maps

𝑓 ∶ (𝑛 ∶ ℕ) → 𝐴𝑛 → 𝐵𝑛

𝑔 ∶ (𝑛 ∶ ℕ) → 𝐵𝑛 → 𝐴𝑛+1,

63

and 𝑈 and 𝐿 are families of coherences between them

𝑈 ∶ (𝑛 ∶ ℕ) → 𝑎𝑛 ∼ (𝑔𝑛 ∘ 𝑓𝑛)
𝐿 ∶ (𝑛 ∶ ℕ) → 𝑏𝑛 ∼ (𝑓𝑛+1 ∘ 𝑔𝑛).

A zigzag (𝑓, 𝑔, 𝑈, 𝐿) can be visualized as a sequence of juxtaposed triangles

𝐴0 𝐴1 𝐴2 ⋯

𝐵0 𝐵1 𝐵2 ⋯ .

𝑎0

𝑓0
𝑈0

𝑎1

𝑓1 𝑈1

𝑎2

𝑓2 ⋯

𝑏0

𝑔0 𝐿0

𝑏1

𝑔1 𝐿1

𝑏2

By forgetting the first triangle and turning the figure upside down, we get a
new zigzag, this time between ℬ and the shift 𝒜[1]. This new zigzag is called a
half-shift.

Construction 4.1.2. Given sequential diagrams 𝒜 ≐ (𝐴, 𝑎) and ℬ ≐ (𝐵, 𝑏), and a
zigzag 𝑧 ≐ (𝑓, 𝑔, 𝑈, 𝐿) between them, construct the half-shift of 𝑧 as the zigzag
(𝑔, 𝑓 ′, 𝐿, 𝑈 ′) between ℬ and 𝒜[1], where

𝑔 ∶ (𝑛 ∶ ℕ) → 𝐵𝑛 → 𝐴𝑛+1

𝑓 ′ ∶= (𝜆𝑛 → 𝑓𝑛+1) ∶ (𝑛 ∶ ℕ) → 𝐴𝑛+1 → 𝐵𝑛+1

𝐿 ∶ (𝑛 ∶ ℕ) → 𝑏𝑛 ∼ (𝑓 ′
𝑛 ∘ 𝑔𝑛)

𝑈 ′ ∶= (𝜆𝑛 → 𝑈𝑛+1) ∶ (𝑛 ∶ ℕ) → 𝑎𝑛+1 ∼ (𝑔𝑛+1 ∘ 𝑓 ′
𝑛).

Remark 4.1.3. Half-shifts of zigzags provide a symmetry of the downward-going
𝑓 maps and upward-going 𝑔 maps. We exploit this symmetry in constructions
and lemmas to follow, by formulating them for the downwards direction, and
then applying them to the half-shift of a zigzag to get the constructions for the
upward direction.

Repeating a half-shift twice gives a full shift, which shifts all the components
by one.

Construction 4.1.4. Given a zigzag 𝑧 ≐ (𝑓, 𝑔, 𝑈, 𝐿) between the sequential dia-
grams 𝒜 and ℬ, define the full shift of 𝑧, denoted 𝑧[1], as the zigzag between
𝒜[1] and ℬ[1] obtained by taking the half-shift of the half-shift of 𝑧. Explicitly,
it consists of the components (𝑓 ′, 𝑔′, 𝑈 ′, 𝐿′), where

𝑓 ′ ∶= (𝜆𝑛 → 𝑓𝑛+1) ∶ (𝑛 ∶ ℕ) → 𝐴𝑛+1 → 𝐵𝑛+1

𝑔′ ∶= (𝜆𝑛 → 𝑔𝑛+1) ∶ (𝑛 ∶ ℕ) → 𝐵𝑛+1 → 𝐴𝑛+2

𝑈 ′ ∶= (𝜆𝑛 → 𝑈𝑛+1) ∶ (𝑛 ∶ ℕ) → 𝑎𝑛+1 ∼ (𝑔𝑛+1 ∘ 𝑓𝑛+1)
𝐿′ ∶= (𝜆𝑛 → 𝐿𝑛+1) ∶ (𝑛 ∶ ℕ) → 𝑏𝑛+1 ∼ (𝑓𝑛+2 ∘ 𝑔𝑛+1).

We can “shear” a zigzag to look at it from yet another perspective, as a mor-
phism 𝐹 ∶ 𝒜 → ℬ, where the necessary squares are constructed by pasting
triangles. Diagrammatically, we have

𝐴0 𝐴1 ⋯

𝐵0 𝐵1 ⋯ .

𝑎0

𝑓0

𝑎1

𝑓1 ⋯

𝑏0

𝑔0

𝑏1

64

This is the morphism of sequential diagrams associated to the zigzag.

Construction 4.1.5. Given a zigzag 𝑧 ≐ (𝑓, 𝑔, 𝑈, 𝐿) between 𝒜 and ℬ, construct
the associated morphism of sequential diagrams from 𝒜 to ℬ to be the mor-
phism (𝑓, 𝐻), where

𝑓 ∶ (𝑛 ∶ ℕ) → 𝐴𝑛 → 𝐵𝑛

𝐻 ∶= (𝐿𝑛 ⋅𝑟 𝑓𝑛) •ℎ (𝑓𝑛+1 ⋅𝑙 𝑈−1
𝑛) ∶ (𝑛 ∶ ℕ) → (𝑏𝑛 ∘ 𝑓𝑛) ∼ (𝑓𝑛1

∘ 𝑎𝑛).

For sequential colimits 𝑐 ∶ coconeℕ(𝒜, 𝑋) and 𝑐′ ∶ coconeℕ(ℬ, 𝑌), write
𝑓∞ ∶ 𝑋 → 𝑌 for the induced map of colimits.

By taking the associated morphism of a half-shift of a zigzag, we get the
associated inverse morphism.

Construction 4.1.6. Given a zigzag 𝑧 between 𝒜 and ℬ, define the associated
inverse morphism to be the morphism ℬ → 𝒜[1] associated to the half-shift of
𝑧.

For sequential colimits 𝑐 ∶ coconeℕ(ℬ, 𝑌) and 𝑐′ ∶ coconeℕ(𝒜[1], 𝑋), write
𝑔∞ ∶ 𝑌 → 𝑋 for the induced map of colimits.

It deserves the moniker “inverse”, because we will show that the induced
map 𝑔∞ is an inverse of 𝑓∞. The last prerequisite to showing that the induced
maps are inverses is a lemma relating zigzags and the shift inclusionmorphisms
incl-homℕ[1].

Lemma 4.1.7. Given a zigzag between sequential diagrams 𝒜 and ℬ, the inclusion
morphism incl-homℕ[1] ∶ 𝒜 → 𝒜[1] is homotopic to the composition of the associated
morphism 𝒜 → ℬ and the inverse morphism ℬ → 𝒜[1].

Proof. Write (𝑓, 𝑔, 𝑈, 𝐿) for the zigzag, and 𝒜 ≐ (𝐴, 𝑎) and ℬ ≐ (𝐵, 𝑏).
We need to show that the morphism

𝐴0 𝐴1 ⋯

𝐴1 𝐴2 ⋯ .

𝑎0

𝑎0

𝑎1

𝑎1 ⋯

𝑎1 𝑎2

and

𝐴0 𝐴1 ⋯

𝐵0 𝐵1 ⋯

𝐴1 𝐴1 ⋯

𝑎0

𝑓0

𝑎1

𝑓1 ⋯

𝑏0

𝑔0

𝑔0

𝑏1

𝑔1 ⋯

𝑎1

𝑓1

𝑎2

are homotopic.
The first component of the homotopy is a family of homotopies of maps

𝐾𝑛 ∶ 𝑎𝑛 ∼ 𝑔𝑛 ∘ 𝑓𝑛. We take the triangles 𝑈𝑛 for the homotopies of maps. Then
we need to show that the homotopies

65

𝐴𝑛 𝐴𝑛+1

𝐵𝑛+1

𝐴𝑛+1 𝐴𝑛+2

𝑎𝑛

𝑎𝑛

𝑓𝑛+1

𝑎𝑛+1
𝑔𝑛+1

𝑈𝑛+1

𝑎𝑛+1

refl-htpy and

𝐴𝑛 𝐴𝑛+1

𝐵𝑛 𝐵𝑛+1

𝐴𝑛+1 𝐴𝑛+2

𝑎𝑛

𝑓𝑛
𝑎𝑛

𝑓𝑛+1
𝑈−1

𝑛

𝑔𝑛

𝑈𝑛

𝐿𝑛

𝑔𝑛+1
𝐿−1

𝑛

𝑎𝑛+1

𝑈𝑛+1

are themselves homotopic. With some effort the pairs 𝑈𝑛 and 𝑈−1
𝑛 , and 𝐿𝑛 and

𝐿−1
𝑛 cancel out, and we end up with 𝑈𝑛+1 on both sides.

Theorem 4.1.8. Consider sequential diagrams 𝒜 and ℬ, their respective colimits
𝑐 ∶ coconeℕ(𝒜, 𝑋) and 𝑐′ ∶ coconeℕ(ℬ, 𝑌), and a zigzag 𝑧 ≐ (𝑓, 𝑔, 𝑈, 𝐿) between
them. Then the associated morphism to 𝑧 induces a map 𝑓∞ ∶ 𝑋 → 𝑌, and when we
take 𝑐[1] ∶ coconeℕ(𝒜[1], 𝑋) to be the colimit of 𝒜[1], the associated inverse morphism
induces a map 𝑔∞ ∶ 𝑌 → 𝑋. Then the two maps are mutually inverse equivalences.

Proof. We first show that with the above assumptions, 𝑓∞ is a section of 𝑔∞,
i.e. 𝑔∞ ∘ 𝑓∞ ∼ id. We can prove it by concatenating the following homotopies:

𝑔∞ ∘ 𝑓∞ ∼ (𝑔 ∘ 𝑓)∞ by Lemma 3.2.30
∼ (incl-homℕ[1])∞ by Lemma 4.1.7 and Lemma 3.2.33
∼ id by Lemma 3.2.47

Then consider the half-shift of 𝑧. The premises of the theorem are fulfilled by
the sequential diagrams ℬ and 𝒜[1], the colimits 𝑐′ and 𝑐[1], and the half-shift.
By the first half of the proof, we get that 𝑔∞ is a section of 𝑓[1]∞, in other words
there is a triangle 𝑓[1]∞ ∘ 𝑔∞ ∼ id. Thus we found a section and a retraction
of 𝑔∞, so by definition it is an equivalence. Then since 𝑓∞ is a section of an
equivalence, it is itself an equivalence, and it is an inverse of 𝑔∞.

4.2 The zigzag construction of identity types
The following construction is a variation of the original zigzag construction of
Wärn [19]. It differs from Wärn’s version in representation of span diagrams
— Wärn represents span diagrams as a pair of types 𝐴, 𝐵 with a type-valued
relation 𝑅 ∶ 𝐴 → 𝐵 → 𝒰. We use the same representation as in the rest of the
thesis, i.e. a triple of types 𝑆, 𝐴, 𝐵 equipped with a pair of maps 𝑓 ∶ 𝑆 → 𝐴,
𝑔 ∶ 𝑆 → 𝐵. These two representations are equivalent: a relation 𝑅 can be seen as
the spanning type Σ(𝑎 ∶ 𝐴)(𝑏 ∶ 𝐵). 𝑅(𝑎, 𝑏) with the first and second projections,
and conversely a spanning type 𝑆 with maps 𝑓, 𝑔 can be seen as the relation
𝜆𝑎, 𝑏 → Σ(𝑠 ∶ 𝑆). (𝑓𝑠 = 𝑎) × (𝑔𝑠 = 𝑏). Adapting Wärn’s construction involves
reconstructing a relation from a span diagram and removing contractible pairs.

This version of the construction is the original type-theoretic one. Wärn later
published a categorical version [20]. Formalization of the categorical version is
not attempted in this thesis. It requires different infrastructure from the one that
had already been built by the time of publication of the categorical version, and
it is also not as straightforward to recover the concrete equivalences between
identity types and the resulting type families.

66

In the rest of the thesis we assume existence of standard pushouts and se-
quential colimits. The pushout cocone of a span diagram is written pushout(𝒮).
Its left and right inclusions are denoted inl and inr, respectively, and its homo-
topy is denoted glue. The uniquedependentmap corresponding to a dependent
cocone 𝑑 is called dep-cogap(𝑑). The sequential colimit cocone of a sequential
diagram 𝐴• is denoted 𝐴∞, and we abuse notation to use the same symbol for
underlying type of the colimit. The inclusion maps into the sequential colimits
are denoted 𝜄𝑛, and its homotopies are denoted 𝜅𝑛.

We begin by describing the construction informally, and then discuss neces-
sary modifications to encode it in a proof assistant.

For the remainder of this section, assume a span diagram 𝒮 ≐ (𝑓, 𝑔) and a
basepoint 𝑎0 ∶ 𝐴. The data we need to construct is a pair of type families

𝑃 𝑛
𝐴 ∶ 𝐴 → 𝒰

𝑃 𝑛
𝐵 ∶ 𝐵 → 𝒰

and a pair of connecting maps

− •𝑛 𝑠 ∶ 𝑃 𝑛
𝐴(𝑓𝑠) → 𝑃 𝑛+1

𝐵 (𝑔𝑠)
− •𝑛 𝑠 ∶ 𝑃 𝑛

𝐵(𝑔𝑠) → 𝑃 𝑛
𝐴(𝑓𝑠),

all of which are indexed by 𝑛 ∶ ℕ. The construction proceeds by induction on
𝑛, with various interdependencies between definitions of the above data.

Take 𝑃 0
𝐴(𝑎) to be the identity type (𝑎0 = 𝑎), 𝑃 0

𝐵(𝑏) to be the empty type 𝟘,
and − •0 𝑠 to be the unique map out of the empty type¹. Note that we cannot
yet define − •0 𝑠, because its intended codomain 𝑃 1

𝐵(𝑔𝑠) is not defined. Then
construct the types 𝑃 𝑛+1

𝐴 (𝑎), 𝑃 𝑛+1
𝐵 (𝑏) and the connecting maps − •𝑛+1 𝑠 and

− •𝑛 𝑠 together as the pushouts and their inclusion maps

Σ(𝑠 ∶ 𝑆)(𝑟 ∶ (𝑎 = 𝑓𝑠)). 𝑃 𝑛
𝐴(𝑎) Σ(𝑠 ∶ 𝑆)(𝑟 ∶ (𝑎 = 𝑓𝑠)). 𝑃 𝑛+1

𝐵 (𝑔𝑠)

𝑃 𝑛
𝐴(𝑎) 𝑃 𝑛+1

𝐴 (𝑎)

tot(tot(−•′
𝑛𝑠))

pr3
⌜

−•𝑛+1𝑠∶=inr

for 𝑎 ∶ 𝐴, and

Σ(𝑠 ∶ 𝑆)(𝑟 ∶ (𝑏 = 𝑔𝑠)). 𝑃 𝑛
𝐵(𝑏) Σ(𝑠 ∶ 𝑆)(𝑟 ∶ (𝑏 = 𝑔𝑠)). 𝑃 𝑛

𝐴(𝑓𝑠)

𝑃 𝑛
𝐵(𝑏) 𝑃 𝑛+1

𝐵 (𝑏)

tot(tot(−•𝑛𝑠))

pr3
⌜

−•𝑛𝑠∶=inr

for 𝑏 ∶ 𝐵. The topmaps tot(tot(−•𝑛𝑠)) and tot(tot(−•𝑛𝑠)) additionally transport
in the type families 𝑃 𝑛

𝐴 and 𝑃 𝑛
𝐵 using the available identifications 𝑟 ∶ (𝑎 = 𝑓𝑠)

and 𝑟 ∶ (𝑏 = 𝑔𝑠) respectively, to make the types line up.
The data dependencies resulting from these definitions are summarized in

Figure 4.1.

¹Since the types 𝐴, 𝐵 and 𝑆 can all live in different universes, we also formally have to raise
the identity type and the empty type to the smallest universe containing all of them. This is
done in the formalization, but it is omitted from the thesis text.

67

⋅ ⊢ 𝑃 0
𝐵 𝑃 𝑛

𝐵 , 𝑃 𝑛
𝐴 , − •𝑛 𝑠 ⊢ 𝑃 𝑛+1

𝐵

⋅ ⊢ 𝑃 0
𝐴 𝑃 𝑛

𝐴 , 𝑃 𝑛+1
𝐵 , − •𝑛 𝑠 ⊢ 𝑃 𝑛+1

𝐴

⋅ ⊢ − •0 𝑠 𝑃 𝑛+1
𝐴 ⊢ − •𝑛+1 𝑠

𝑃 1
𝐵(𝑏) ⊢ − •0 𝑠 𝑃 𝑛+1

𝐵 ⊢ − •𝑛 𝑠

Figure 4.1: Dependencies between definitions in the zigzag construction.

Formally, we induct on the stage 𝑛 ∶ ℕ, so we need a type family over ℕ to in-
duct into. Writing down the type of −•𝑛 𝑠 poses a challenge already, because to
define it at stage 𝑛, it needs to knowwhat the type family 𝑃𝐵 is at the next stage
𝑛 + 1. One possibility is to not refer to its codomain as 𝑃 𝑛+1

𝐵 (𝑔𝑠), but instead
inline its definition as the appropriate pushout, because all the necessary data
to construct 𝑃 𝑛+1

𝐵 (𝑔𝑠) is available at stage 𝑛. Then after performing the con-
struction, its codomain will be judgmentally equal to 𝑃 𝑛+1

𝐵 (𝑔𝑠). This approach
has two disadvantages. The first one is duplication of code — one would need
to construct the exact span diagram and its pushout to both state the type, and
provide an inhabitant of one of its components. Additionally, the code for the
definition of the cases − •0 𝑠 and − •𝑛+1 𝑠 would be identical. The other issue
is computational: in contrast to − •𝑛 𝑠, the map − •𝑛 𝑠 is defined as the right
inclusion map of a pushout at every stage 𝑛. But this is invisible to computa-
tion, because it is defined together with the other data by induction on 𝑛, so the
definition only computes when it is applied to either of the constructors 0 or
𝑛′ + 1.

The preferred definition of the type family, which we chose to formalize,
removes the − •𝑛 𝑠 component altogether. In the construction itself it is only
used to define 𝑃 𝑛+1

𝐴 , where it can be replaced by a direct reference to the right
inclusion map of the pushout 𝑃 𝑛+1

𝐵 (𝑔𝑠), which is already defined by the time
we need to define 𝑃 𝑛+1

𝐴 . Then − •𝑛 𝑠 can be defined after the construction as
the right inclusion map at every stage, without induction, removing code du-
plication and giving it the right computational behavior. We also want to refer
to the span diagrams defining 𝑃 𝑛+1

𝐵 and 𝑃 𝑛+1
𝐴 later in the code, hence we also

remember those in the construction.

Definition 4.2.1. Given a natural number 𝑛, define the type of zigzag construc-
tion data at stage 𝑛 to be the type of quadruples (𝑃 𝑛

𝐵 , 𝑃 𝑛
𝐴 , − •𝑛 𝑠, 𝐷), where

𝑃 𝑛
𝐵 ∶ 𝐵 → 𝒰

𝑃 𝑛
𝐴 ∶ 𝐴 → 𝒰

are type families,
− •𝑛 𝑠 ∶ 𝑃 𝑛

𝐵(𝑔𝑠) → 𝑃 𝑛
𝐴(𝑓𝑠)

is a family ofmaps indexed by 𝑠 ∶ 𝑆, and 𝐷 is an element of the unit type if 𝑛 = 0,
or of the type of pairs (𝒯𝑛

𝐵, 𝒯𝑛
𝐴) where 𝒯𝑛

𝐵 is a family of span diagrams indexed
by 𝐵, and 𝒯𝑛

𝐴 is a family of span diagrams indexed by 𝐴 if 𝑛 is a successor.

68

This type can be inhabited for all 𝑛 ∶ ℕ, using the construction described
above.

Construction 4.2.2. Construct an inhabitant of the type of zigzag construction
data for every stage 𝑛 by induction.

For the zero case, use

𝑃 0
𝐵 ∶= (𝜆𝑏 → 𝟘) ∶ 𝐵 → 𝒰

𝑃 0
𝐴 ∶= (𝜆𝑎 → (𝑎0 = 𝑎)) ∶ 𝐴 → 𝒰

− •𝑛 𝑠 ∶= ex-falso ∶ 𝑃 0
𝐵(𝑔𝑠) → 𝑃 0

𝐴(𝑓𝑠)
𝐷0 ∶= ⋆ ∶ 𝟙.

For the successor case 𝑛 + 1, first construct the families of span diagrams
𝒯𝑛+1

𝐵 . For an element 𝑏 ∶ 𝐵, define 𝒯𝑛+1
𝐵 (𝑏) to be the span diagram

𝑃 𝑛
𝐵(𝑏) Σ(𝑠 ∶ 𝑆)(𝑟 ∶ 𝑏 = 𝑔𝑠). 𝑃 𝑛

𝐵(𝑏) Σ(𝑠 ∶ 𝑆)(𝑟 ∶ 𝑏 = 𝑔𝑠). 𝑃 𝑛
𝐴(𝑓𝑠),

pr3 𝜑

where 𝜑 sends (𝑠, 𝑟, 𝑝) to (𝑠, 𝑟, (tr𝑃 𝑛
𝐵

(𝑟, 𝑝))•𝑛 𝑠). Take 𝑃 𝑛+1
𝐵 (𝑏) to be the standard

pushout of this diagram, and to denote its homotopy glue𝑛
𝐵
. Analogously, for

an element 𝑎 ∶ 𝐴, define 𝒯𝑛+1
𝐴 (𝑎) to be the span diagram

𝑃 𝑛
𝐴(𝑎) Σ(𝑠 ∶ 𝑆)(𝑟 ∶ 𝑎 = 𝑓𝑠). 𝑃 𝑛

𝐴(𝑎) Σ(𝑠 ∶ 𝑆)(𝑟 ∶ 𝑎 = 𝑓𝑠). 𝑃 𝑛+1
𝐵 (𝑔𝑠)

pr3 𝜓

where the map 𝜓 takes (𝑠, 𝑟, 𝑝) to (𝑠, 𝑟, inr(𝑠, refl, tr𝑃 𝑛
𝐴

(𝑟, 𝑝))), using the right
inclusion inr into the pushout 𝑃 𝑛+1

𝐵 (𝑔𝑠). Then define 𝑃 𝑛+1
𝐴 (𝑎) to be the standard

pushout of 𝒯𝑛+1
𝐴 (𝑎), and denote its homotopy glue𝑛

𝐴
. Finally, define 𝑝 •𝑛+1 𝑠 to

be inr(𝑠, refl, 𝑝) using the right inclusion map into 𝑃 𝑛+1
𝐴 (𝑓𝑠).

We keep using the names 𝑃 𝑛
𝐵 , 𝑃 𝑛

𝐴 , − •𝑛 𝑠, 𝒯𝑛
𝐵 and 𝒯𝑛

𝐴 for the corresponding
elements of this canonical construction. Note that the span diagrams 𝒯𝑛

𝐵(𝑏) and
𝒯𝑛

𝐴(𝑎) are not defined when 𝑛 is zero; they are the defining span diagrams of
𝑃 𝑛

𝐵(𝑏) and 𝑃 𝑛
𝐴(𝑎), respectively, which are only pushouts in the successor case.

Construction 4.2.3. For every stage 𝑛 ∶ ℕ and element 𝑠 ∶ 𝑆, define the map

− •𝑛 𝑠 ∶ 𝑃 𝑛
𝐴(𝑓𝑠) → 𝑃 𝑛+1

𝐵 (𝑔𝑠)

to send 𝑝 to inr(𝑠, refl, 𝑝), where inr is the right inclusion of the defining pushout
of 𝑃 𝑛+1

𝐵 (𝑔𝑠).

We may also construct the sequential diagrams of approximations of the
type families (inl(𝑎0) = inr(𝑏)) and (inl(𝑎0) = inl(𝑎)).

Construction 4.2.4. Given an element 𝑏 ∶ 𝐵, define the sequential diagram𝑃 •
𝐵(𝑏)

to be the diagram

𝟘 𝑃 1
𝐵(𝑏) 𝑃 2

𝐵(𝑏) ⋯ ,incl0𝐵 incl1𝐵 incl2𝐵

69

where themaps incl𝑛𝐵 are the left inclusions inl of the pushouts defining𝑃 𝑛+1
𝐵 (𝑏).

Denote its sequential colimit 𝑃 ∞
𝐵 (𝑏), with inclusionmaps 𝜄𝑛

𝐵 and coherences
𝜅𝑛

𝐵.

Construction 4.2.5. Given an element 𝑎 ∶ 𝐴, define the sequential diagram
𝑃 •

𝐴(𝑎) to be the diagram

(𝑎0 = 𝑎) 𝑃 1
𝐴(𝑎) 𝑃 2

𝐴(𝑎) ⋯ ,incl0𝐴 incl1𝐴 incl2𝐴

where themaps incl𝑛𝐴 are the left inclusions inl of the pushouts defining𝑃 𝑛+1
𝐴 (𝑎).

Denote its sequential colimit 𝑃 ∞
𝐴 (𝑎), with inclusionmaps 𝜄𝑛

𝐴 and coherences
𝜅𝑛

𝐴.

While we define the full sequential diagram starting with 𝑃 0
𝐵(𝑏), we only do

so for uniformity of the zigzag construction. This way exactly the type families
with a non-zero index are pushouts. When working with the construction we
drop the first vertex and compute only with 𝑃 𝑛+1

𝐵 (𝑏), which are all pushouts.
This is accomplished by passing to the shift𝑃 •

𝐵(𝑏)[1], which has the same colimit
𝑃 ∞

𝐵 (𝑏).
When constrained to 𝑃 •

𝐵(𝑔𝑠) and 𝑃 •
𝐴(𝑓𝑠), the two sequential diagrams admit

a zigzag between them.

Construction 4.2.6. Given an element 𝑠 ∶ 𝑆, construct the zigzag 𝑍 between
𝑃 •

𝐴(𝑓𝑠) and the shift 𝑃 •
𝐵(𝑔𝑠)[1] as

(𝑎0 = 𝑓𝑠) 𝑃 1
𝐴(𝑓𝑠) 𝑃 2

𝐴(𝑓𝑠) ⋯

𝑃 1
𝐵(𝑔𝑠) 𝑃 2

𝐵(𝑔𝑠) 𝑃 3
𝐵(𝑔𝑠) ⋯ ,

incl0𝐴

−•0𝑠

incl1𝐴

−•1𝑠

incl2𝐴

−•2𝑠

incl1𝐵

−•1𝑠

incl2𝐵

−•2𝑠

incl3𝐵

where the triangles are the gluing homotopies

glue𝑛
𝐴

(𝑠, refl) ∶ incl𝑛𝐴 ∼(− •𝑛 𝑠) •𝑛+1 𝑠
glue𝑛

𝐵
(𝑠, refl) ∶ incl𝑛𝐵 ∼(− •𝑛 𝑠) •𝑛 𝑠.

of the defining pushouts of 𝑃 𝑛+1
𝐴 (𝑓𝑠) and 𝑃 𝑛+1

𝐵 , respectively.

Construction 4.2.7. Define the zigzag descent data (𝑃 ∞
𝐴 , 𝑃 ∞

𝐵 , − •∞ 𝑠), where
the type families are constructed by taking sequential colimits of 𝑃 •

𝐴(𝑎) and
𝑃 •

𝐵(𝑏)[1], respectively, and the family of equivalences

− •∞ 𝑠 ∶ 𝑃 ∞
𝐴 (𝑓𝑠) ≃ 𝑃 ∞

𝐵 (𝑔𝑠)

is induced by the zigzag between 𝑃 •
𝐴(𝑓𝑠) and 𝑃 •

𝐵(𝑔𝑠)[1] for an element 𝑠 ∶ 𝑆,
using Theorem 4.1.8.

Additionally, this descent data is pointed with 𝜄0
𝐴(refl𝑎0

) ∶ 𝑃 ∞
𝐴 (𝑎0), which

we call refl∞.

Lemma 4.2.8. For every element 𝑠 ∶ 𝑆, there is a family of commuting square of maps
indexed by 𝑛 ∶ ℕ

70

𝑃 𝑛
𝐴(𝑓𝑠) 𝑃 𝑛+1

𝐵 (𝑔𝑠)

𝑃 ∞
𝐴 (𝑓𝑠) 𝑃 ∞

𝐵 (𝑔𝑠),

−•𝑛𝑠

𝜄𝑛
𝐴 𝜄𝑛+1

𝐵

−•∞𝑠

call them 𝐶𝑛(𝑠), which fit in a commuting prism

𝑃 𝑛
𝐴(𝑓𝑠) 𝑃 𝑛+1

𝐴 (𝑓𝑠)

𝑃 ∞
𝐴 (𝑓𝑠)

𝑃 𝑛+1
𝐵 (𝑔𝑠) 𝑃 𝑛+2

𝐵 (𝑔𝑠)

𝑃 ∞
𝐵 (𝑔𝑠)

−•𝑛𝑠

incl𝑛𝐴

𝜄𝑛
𝐴 −•𝑛+1𝑠𝜄𝑛+1

𝐴

incl𝑛+1
𝐵

𝜄𝑛+1
𝐵 𝜄𝑛+2

𝐵

−•∞𝑠

as the front squares, with the triangles being 𝜅𝑛
𝐴 and 𝜅𝑛+1

𝐵 , and the back square a com-
position of (glue𝑛

𝐴
)−1 and glue𝑛+1

𝐵
.

Proof. The data is obtained from themorphism associated to the zigzag 𝑍 using
Lemma 3.2.28.

4.3 Partial proof of correctness
We write down a partial proof that the zigzag descent data (𝑃 ∞

𝐴 , 𝑃 ∞
𝐵 , − •∞ 𝑠)

is an identity system at refl∞. Incompleteness of the proof is due to Conjec-
ture 4.3.11, which remains an unproven coherence condition at the time of writ-
ing.

To show that the zigzagdescent data is an identity system,we assumepointed
descent data 𝑄 over its total span diagram, and the rest of the thesis is dedicated
to providing a section of 𝑄.

Explicitly, in the remainder of this section assume type families

𝑄Σ𝐴 ∶ (𝑎 ∶ 𝐴) → 𝑃 ∞
𝐴 (𝑎) → 𝒰

𝑄Σ𝐵 ∶ (𝑏 ∶ 𝐵) → 𝑃 ∞
𝐵 (𝑏) → 𝒰,

a family of equivalences

𝑄Σ𝑆 ∶ (𝑠 ∶ 𝑆)(𝑝 ∶ 𝑃 ∞
𝐴 (𝑎)) → 𝑄Σ𝐴(𝑓𝑠, 𝑝) ≃ 𝑄Σ𝐵(𝑔𝑠, 𝑝 •∞ 𝑠),

and a point 𝑞0 ∶ 𝑄Σ𝐴(𝑎0, refl∞). The goal is to conjure a section, i.e. define a
pair of dependent functions

𝑡𝐴 ∶ (𝑎 ∶ 𝐴)(𝑝 ∶ 𝑃 ∞
𝐴 (𝑎)) → 𝑄Σ𝐴(𝑎, 𝑝)

𝑡𝐵 ∶ (𝑏 ∶ 𝐵)(𝑝 ∶ 𝑃 ∞
𝐵 (𝑏)) → 𝑄Σ𝐵(𝑏, 𝑝)

and a family of identifications

𝑡𝑆 ∶ (𝑠 ∶ 𝑆)(𝑝 ∶ 𝑃 ∞
𝐴 (𝑓𝑠)) → 𝑄Σ𝑆(𝑠, 𝑝, 𝑡𝐴(𝑓𝑠, 𝑝)) = 𝑡𝐵(𝑔𝑠, 𝑝 •∞ 𝑠).

71

We may occasionally omit some arguments when writing down expressions,
and we pass freely between the curried and uncurried forms, to aid readability
and clarity of intent.

In each case the construction proceeds by induction on the argument 𝑝. By
the dependent universal property of sequential colimits, it suffices to define the
data

𝑡𝑛
𝐴 ∶ (𝑎 ∶ 𝐴)(𝑝 ∶ 𝑃 𝑛

𝐴(𝑎)) → 𝑄Σ𝐴(𝑎, 𝜄𝑛
𝐴(𝑝))

𝐾𝑛
𝐴 ∶ (𝑎 ∶ 𝐴)(𝑝 ∶ 𝑃 𝑛

𝐴(𝑎)) → tr𝑄Σ𝐴(𝑎)(𝜅𝑛
𝐴(𝑝), 𝑡𝑛

𝐴(𝑎, 𝑝)) = 𝑡𝑛+1
𝐴 (𝑎, incl𝑛𝐴 𝑝)

𝑡𝑛
𝐵 ∶ (𝑏 ∶ 𝐵)(𝑝 ∶ 𝑃 𝑛

𝐵(𝑏)) → 𝑄Σ𝐵(𝑏, 𝜄𝑛
𝐵(𝑝))

𝐾𝑛
𝐵 ∶ (𝑏 ∶ 𝐵)(𝑝 ∶ 𝑃 𝑛

𝐵(𝑏)) → tr𝑄Σ𝐵(𝑏)(𝜅𝑛
𝐵(𝑝), 𝑡𝑛

𝐵(𝑏, 𝑝)) = 𝑡𝑛+1
𝐵 (𝑏, incl𝑛𝐵 𝑝)

for the maps, and

𝑡𝑛
𝑆 ∶ (𝑠 ∶ 𝑆)(𝑝 ∶ 𝑃 𝑛

𝐴(𝑓𝑠)) → 𝑄Σ𝑆(𝑠, 𝜄𝑛
𝐴(𝑝), 𝑡𝐴(𝑓𝑠, 𝜄𝑛

𝐴(𝑝))) = 𝑡𝐵(𝑔𝑠, (𝜄𝑛
𝐴(𝑝)) •∞ 𝑠)

𝐾𝑛
𝑆 ∶ (𝑠 ∶ 𝑆)(𝑝 ∶ 𝑃 𝑛

𝐴(𝑓𝑠)) →
tr𝜆𝑞→(𝑄Σ𝑆(𝑠,𝑞,𝑡𝐴(𝑓𝑠,𝑞))=𝑡𝐵(𝑔𝑠,𝑞•∞𝑠))(𝜅𝑛

𝐴(𝑝), 𝑡𝑛
𝑆(𝑠, 𝑝)) = 𝑡𝑛+1

𝑆 (𝑠, incl𝑛𝐴 𝑝)

for the coherence.
We begin with the maps 𝑡𝑛

𝐵 and 𝑡𝑛
𝐴, which are defined together. We first

present their construction informally, and then explain the modifications nec-
essary for Agda to accept them in code.

The maps 𝑡𝑛
𝐵 and 𝑡𝑛

𝐴 are defined by induction on 𝑛. In the zero case, the
domain of 𝑡0

𝐵(𝑏) is the empty type, so it is defined by ex-falso. The domain
of 𝑡0

𝐴(𝑎) is the identity type (𝑎0 = 𝑎), and inducting on it gives us the goal
of inhabiting 𝑄Σ𝐴(𝑎0, 𝜄0

𝐴(refl)), which we can do by the basepoint 𝑞0. In the
successor case 𝑛 + 1, we eliminate from the pushouts 𝑃 𝑛+1

𝐵 (𝑏) and 𝑃 𝑛+1
𝐴 (𝑎),

so we use the dependent universal property of pushouts. This means that we
need to give definitions of the maps on point constructors and a coherence over
the path constructor, which defines a dependent cocone. Let us begin with the
point constructor cases.

To define 𝑡𝑛+1
𝐵 , the behavior on point constructors consists of maps

𝑡𝑛+1
𝐵 (𝑏, incl𝑛𝐵(−)) ∶ (𝑝 ∶ 𝑃 𝑛

𝐵(𝑏)) → 𝑄Σ𝐵(𝑏, 𝜄𝑛+1
𝐵 (incl𝑛𝐵 𝑝))

𝑡𝑛+1
𝐵 (𝑔𝑠, − •𝑛 𝑠) ∶ (𝑝 ∶ 𝑃 𝑛

𝐴(𝑓𝑠)) → 𝑄Σ𝐵(𝑔𝑠, 𝜄𝑛+1
𝐵 (𝑝 •𝑛 𝑠)).

Weneed to distinguish between 𝑡𝑛+1
𝐵 and 𝑡𝑛+1

𝐵 , because they have different com-
putational properties. Since wework in a type theorywithout judgmental com-
putation rules for pushouts, once we combine the data into the map 𝑡𝑛+1

𝐵 , its be-
havior on path constructors will only hold up to an identification. In contrast,
𝑡𝑛+1
𝐵 is a pair of functions which compute judgmentally, but their applications
are only well-formedwhen they are syntactically applied to a point constructor.
The statement of the second function is in a form after inducting on the term
𝑟 ∶ 𝑏 = 𝑔𝑠 in the context. The maps are defined by

𝑡𝑛+1
𝐵 (𝑏, incl𝑛𝐵(𝑝)) ∶= tr𝑄Σ𝐵(𝑏)(𝜅𝑛

𝐵(𝑝), 𝑡𝑛
𝐵(𝑏, 𝑝))

𝑡𝑛+1
𝐵 (𝑔𝑠, 𝑝 •𝑛 𝑠) ∶= tr𝑄Σ𝐵(𝑔𝑠)(𝐶𝑛(𝑠, 𝑝), 𝑄Σ𝑆(𝑠, 𝜄𝑛

𝐴(𝑝), 𝑓𝑠, 𝑡𝑛
𝐴(𝑓𝑠, 𝑝))).

72

Similarly for the definition of 𝑡𝑛+1
𝐴 on point constructors, we need to give

𝑡𝑛+1
𝐴 (𝑎, incl𝑛𝐴(−)) ∶ (𝑝 ∶ 𝑃 𝑛

𝐴(𝑎)) → 𝑄Σ𝐴(𝑎, 𝜄𝑛+1
𝐴 (incl𝑛𝐴 𝑝))

𝑡𝑛+1
𝐴 (𝑓𝑠, − •𝑛+1 𝑠) ∶ (𝑝 ∶ 𝑃 𝑛+1

𝐵 (𝑔𝑠)) → 𝑄Σ𝐴(𝑓𝑠, 𝜄𝑛+1
𝐴 (𝑝 •𝑛+1 𝑠)).

The behavior on incl𝑛𝐴 is analogous to the one of 𝑡𝑛+1
𝐵 , specifically

𝑡𝑛+1
𝐴 (𝑎, incl𝑛𝐴(𝑝)) ∶= tr𝑄Σ𝐴(𝑎)(𝜅𝑛

𝐴(𝑝), 𝑡𝑛
𝐴(𝑎, 𝑝)).

For the second map, we would expect to use the inverse 𝑄Σ𝑆(𝑠, −)−1. It is not
that straightforward, because 𝑡𝑛+1

𝐵 (𝑔𝑠, 𝑝) gives an element of 𝑄Σ𝐵(𝑔𝑠, 𝜄𝑛+1
𝐵 (𝑝)),

and 𝑄Σ𝑆(𝑠, −)−1 can only undo an application of −•∞𝑠 under 𝑄Σ𝐵(𝑔𝑠), not add
an application of − •∞ 𝑠 under 𝑄Σ𝐴(𝑓𝑠). One might try to fix this by recalling
that − •∞ 𝑠 and − •∞ 𝑠 are inverse equivalences, and using the homotopy

id ∼(− •∞ 𝑠) •∞ 𝑠.

This approach leads to complications in proving further coherences, so instead
we define a helper function which we can later compute with.

Construction 4.3.1. For any element 𝑠 ∶ 𝑆 and natural number 𝑛, define themap

Φ𝑛(𝑠) ∶ (𝑝 ∶ 𝑃 𝑛+1
𝐵 (𝑔𝑠)) → 𝑄Σ𝐵(𝑔𝑠, 𝜄𝑛+1

𝐵 𝑝) → 𝑄Σ𝐵(𝑔𝑠, (𝜄𝑛+1
𝐴 (𝑝 •𝑛+1 𝑠)) •∞ 𝑠)

as the composition of transports

𝑄Σ𝐵(𝑔𝑠, 𝜄𝑛+1
𝐵 𝑝)

𝑄Σ𝐵(𝑔𝑠, 𝜄𝑛+2
𝐵 (incl𝑛+1

𝐵 𝑝))

𝑄Σ𝐵(𝑔𝑠, 𝜄𝑛+2
𝐵 ((𝑝 •𝑛+1 𝑠) •𝑛+1 𝑠))

𝑄Σ𝐵(𝑔𝑠, (𝜄𝑛+1
𝐴 (𝑝 •𝑛+1 𝑠)) •∞ 𝑠).

tr𝑄Σ𝐵(𝑔𝑠)(𝜅𝑛+1
𝐵 𝑝)

tr𝑄Σ𝐵(𝑔𝑠,𝜄𝑛+2
𝐵 (−))(glue𝑛+1

𝐵 (𝑠,refl,𝑝))

tr𝑄Σ𝐵(𝑔𝑠)(𝐶𝑛+1(𝑠,𝑝•𝑛+1𝑠))−1

With this function in hand, we can define

𝑡𝑛+1
𝐴 (𝑓𝑠, 𝑝 •𝑛+1 𝑠) ∶= (𝑄Σ𝑆(𝑠, 𝜄𝑛+1

𝐴 (𝑝 •𝑛+1 𝑠)))−1(Φ𝑛(𝑠, 𝑝, 𝑡𝑛+1
𝐵 (𝑔𝑠, 𝑝))).

The path constructor cases will be less similar between 𝑡𝑛+1
𝐵 and 𝑡𝑛+1

𝐴 . The
coherence of 𝑡𝑛+1

𝐵 asks us to inhabit the type

(𝑝 ∶ 𝑃 𝑛
𝐵(𝑔𝑠)) → tr𝑄Σ𝐵(𝑔𝑠,𝜄𝑛+1

𝐵 (−))(glue𝑛
𝐵

(𝑝), 𝑡𝑛+1
𝐵 (incl𝑛𝐵(𝑝))) = 𝑡𝑛+1

𝐵 ((𝑝 •𝑛 𝑠) •𝑛 𝑠).

Here we once again need to case split on 𝑛. In the zero case we eliminate from
𝑃 0

𝐵(𝑔𝑠) ≐ 𝟘, so we inhabit the coherence by ex-falso. In the successor case, the
right-hand side computes to

tr𝑄Σ𝐵(𝑔𝑠)(𝐶𝑛+1(𝑠, 𝑝 •𝑛+1 𝑠), 𝑄Σ𝑆(𝑠, 𝜄𝑛+1
𝐴 (𝑝 •𝑛+1 𝑠), 𝑡𝑛+1

𝐴 (𝑝 •𝑛+1 𝑠))),

73

where we can use a computation rule of 𝑡𝑛+1
𝐴 and further expand Φ𝑛 in the re-

sulting expression. Then the two sides are identified, because the equivalence
𝑄Σ𝑆(𝑠, 𝜄𝑛+1

𝐴 (𝑝 •𝑛+1 𝑠)) cancels out with its inverse, and so does
tr𝑄Σ𝐵(𝑔𝑠)(𝐶𝑛+1(𝑠, 𝑝 •𝑛+1 𝑠)).

The coherence for 𝑡𝑛+1
𝐴 has the type

(𝑝 ∶ 𝑃 𝑛
𝐴(𝑓𝑠)) → tr𝑄Σ𝐴(𝑓𝑠,𝜄𝑛+1

𝐴 (−))(glue𝑛
𝐴

(𝑝), 𝑡𝑛+1
𝐴 (incl𝑛𝐴(𝑝))) = 𝑡𝑛+1

𝐴 ((𝑝•𝑛 𝑠)•𝑛+1 𝑠).

We can expand the 𝑡𝑛+1
𝐴 , the Φ𝑛, and also use the computation rule of 𝑡𝑛+1

𝐵 to
compute 𝑡𝑛+1

𝐵 (𝑝•𝑛 𝑠). By transposing 𝑄Σ𝑆(𝑠, 𝜄𝑛+1
𝐴 ((𝑝•𝑛 𝑠)•𝑛+1 𝑠))−1 to the other

side of the identification, we see that the goal is to make the diagram

𝑄Σ𝐴(𝑓𝑠, 𝜄𝑛
𝐴(𝑝)) 𝑄Σ𝐵(𝑔𝑠, (𝜄𝑛

𝐴(𝑝)) •∞ 𝑠)

𝑄Σ𝐵(𝑔𝑠, 𝜄𝑛+1
𝐵 (𝑝 •𝑛 𝑠))

𝑄Σ𝐴(𝑓𝑠, 𝜄𝑛+1
𝐴 (incl𝑛𝐴(𝑝))) 𝑄Σ𝐵(𝑔𝑠, 𝜄𝑛+2

𝐵 (incl𝑛+1
𝐵 (𝑝 •𝑛 𝑠)))

𝑄Σ𝐵(𝑔𝑠, 𝜄𝑛+2
𝐵 (((𝑝 •𝑛 𝑠) •𝑛+1 𝑠) •𝑛+1 𝑠))

𝑄Σ𝐴(𝑓𝑠, 𝜄𝑛+1
𝐴 ((𝑝 •𝑛 𝑠) •𝑛+1 𝑠)) 𝑄Σ𝐵(𝑔𝑠, (𝜄𝑛+1

𝐵 ((𝑝 •𝑛 𝑠) •𝑛+1 𝑠)) •∞ 𝑠)

𝑄Σ𝑆(𝑠,𝜄𝑛
𝐴(𝑝))

tr𝑄Σ𝐴(𝑓𝑠)(𝜅𝑛
𝐴(𝑝))

tr𝑄Σ𝐵(𝑔𝑠)(𝐶𝑛(𝑠,𝑝))

tr𝑄Σ𝐵(𝑔𝑠)(𝜅𝑛+1
𝐵 (𝑝•𝑛𝑠))

tr𝑄Σ𝐴(𝑓𝑠,𝜄𝑛+1
𝐴 (−))(glue𝑛

𝐴(𝑝))

tr𝑄Σ𝐴(𝑔𝑠),𝜄𝑛+2
𝐵 (−)(glue𝑛+1

𝐵 (𝑝•𝑛𝑠))

tr𝑄Σ𝐵(𝑔𝑠)(𝐶𝑛+1(𝑠,(𝑝•𝑛𝑠)•𝑛+1𝑠))−1

𝑄Σ𝑆(𝑠,𝜄𝑛+1
𝐴 ((𝑝•𝑛𝑠)•𝑛+1𝑠))

commute from right to left— it is rotated only to fit on the page. Commutativity
can be established using the following lemma.

Lemma 4.3.2. Given types 𝐴, 𝐵 and a function 𝑓 ∶ 𝐴 → 𝐵, type families 𝑃 ∶ 𝐴 → 𝒰
and 𝑄 ∶ 𝐵 → 𝒱, a fiberwise function ℎ ∶ (𝑎 ∶ 𝐴) → 𝑃(𝑎) → 𝑄(𝑓𝑎), identifications
𝑝 ∶ 𝑥 = 𝑦 of elements in 𝐴 and 𝑞 ∶ 𝑓𝑥 = 𝑓𝑦, and a coherence 𝛼 ∶ ap

𝑓
(𝑝) = 𝑞, there is a

commuting square

𝑃(𝑥) 𝑃(𝑦)

𝑄(𝑓𝑥) 𝑄(𝑓𝑦).

tr𝑃(𝑝)

ℎ(𝑥) ℎ(𝑦)

tr𝑄(𝑞)

Proof. By induction on 𝛼 and 𝑝, it suffices to provide a homotopy ℎ(𝑥) ∼ ℎ(𝑥),
which we can fulfill with refl-htpy.

By computing transports of the form tr(𝑃∘𝑓)(𝑝) to tr𝑃(ap
𝑓

𝑝) (Lemma 1.0.5)
and applying distributivity of concatenation and transport (Lemma 1.0.2), we
can collect both sides of the diagram into one transport each, at which point
we may apply the above lemma. The coherence 𝛼 is obtained from the prism

74

Lemma 4.2.8 by straightforward homotopy algebra. This completes the infor-
mal construction of the maps 𝑡𝑛

𝐵 and 𝑡𝑛
𝐴.

In the formalization, we are again met with computation issues. Since 𝑡𝑛
𝐵

and 𝑡𝑛
𝐴 are defined together by induction on 𝑛, and the definition of 𝑡𝑛+1

𝐵 does
one more case split on 𝑛, we end up with three cases for the induction, namely
0, 1 and 𝑛 + 2. As a consequence, 𝑡𝑛+1

𝐴 (𝑝 •𝑛+1 𝑠) does not have a uniform def-
inition, because it is also defined by cases 0, 1 and 𝑛 + 2. But we rely on its
definition when computing the coherence of 𝑡𝑛+1

𝐵 . If we naïvely try to case split
on𝑛 again to analyze the cases 𝑡1

𝐴 and 𝑡𝑛+2
𝐴 separately, wewould endupdefining

everything in terms of the cases 0, 1, 2 and 𝑛 + 3. Instead, during the definition
of 𝑡𝑛+1

𝐵 and 𝑡𝑛+1
𝐴 we carry a proof that 𝑡𝑛+1

𝐴 (𝑝 •𝑛+1 𝑠) is identical to the desired
composition of 𝑄−1

Σ𝑆 and Φ. This component will be satisfied by refl at all stages.
Furthermore, during induction we need to compute with 𝑡𝑛+1

𝐵 and 𝑡𝑛+1
𝐴 as

maps defined by the dependent universal property, meaning that we need to
carry around their defining dependent cocones. Rather than defining together
the maps, the dependent cocones, and proofs that the maps are defined by the
respective dependent cocones, we prefer to construct only the dependent co-
cones during induction, materializing their induced maps 𝑡𝑛+1

𝐵 and 𝑡𝑛+1
𝐴 only

when necessary.

Definition 4.3.3. Given a natural number 𝑛, the type of section cocones at stage
𝑛 is the type of triples (𝑑𝑛

𝐵, 𝑑𝑛
𝐴, 𝑅𝑛), where

𝑑𝑛
𝐵 ∶ (𝑏 ∶ 𝐵) → dep-cocone(pushout(𝒯𝑛+1

𝐵 (𝑏)), 𝑄Σ𝐵(𝑏, 𝜄𝑛+1
𝐵 (−)))

𝑑𝑛
𝐴 ∶ (𝑎 ∶ 𝐴) → dep-cocone(pushout(𝒯𝑛+1

𝐴 (𝑎)), 𝑄Σ𝐴(𝑎, 𝜄𝑛+1
𝐴 (−)))

are families of dependent cocones over the standard pushout cocones of the
span diagrams defining 𝑃 𝑛+1

𝐵 (𝑏) and 𝑃 𝑛+1
𝐴 (𝑎), respectively, and 𝑅𝑛 is an iden-

tification between the vertical map of 𝑑𝑛
𝐴(𝑓𝑠) applied to 𝑝 ∶ 𝑃 𝑛+1

𝐵 (𝑔𝑠) and the
element

(𝑄Σ𝑆(𝑠, 𝜄𝑛+1
𝐴 (𝑝 •𝑛+1 𝑠)))−1(Φ𝑛(𝑠, 𝑝, dep-cogap(𝑑𝑛

𝐵(𝑔𝑠), 𝑝))).

Construction 4.3.4. For any natural number 𝑛, construct a section cocone at
stage 𝑛. Begin by case splitting on 𝑛. Define the left map and coherence of 𝑑0

𝐵
by ex-falso, and the right map by pattern matching on 𝑝 ∶ 𝑃 0

𝐴(𝑓𝑠), and filling
the goal with tr𝑄Σ𝐵(𝑔𝑠)(𝐶0(𝑠, refl), 𝑄Σ𝑆(𝑠, refl∞)(𝑞0)). For the successor case,
define the left and right maps of 𝑑𝑛+1

𝐵 like in the informal description, replacing
𝑡𝑛+1
𝐵 (𝑏) by dep-cogap(𝑑𝑛

𝐵(𝑏)) and 𝑡𝑛+1
𝐴 (𝑎) by dep-cogap(𝑑𝑛

𝐴(𝑎)). Similarly, define
the left and right maps and coherences of 𝑑0

𝐴 and 𝑑𝑛+1
𝐴 following the informal

description, replacing calls to 𝑡𝑛+1
𝐵 and 𝑡𝑛

𝐴 with the cogapmaps of the appropri-
ate dependent cocones. Use the reflexive homotopy for the witnesses 𝑅0 and
𝑅𝑛+1.

Finally, construct the coherence of 𝑑𝑛+1
𝐵 using the informal description, fol-

lowing the computation rule of dep-cogap(𝑑𝑛+1
𝐴) by the identification 𝑅𝑛 to get

to the desired shape of the right-hand side of the coherence.

The dependent cocones induce maps 𝑡𝑛+1
𝐵 and 𝑡𝑛+1

𝐴 , for which we can add
the base cases to get the maps 𝑡𝑛

𝐵 and 𝑡𝑛
𝐴.

75

Construction 4.3.5. Construct the maps

𝑡𝑛
𝐵 ∶ (𝑏 ∶ 𝐵)(𝑝 ∶ 𝑃 𝑛

𝐵(𝑏)) → 𝑄Σ𝐵(𝑏, 𝜄𝑛
𝐵(𝑝))

𝑡𝑛
𝐴 ∶ (𝑎 ∶ 𝐴)(𝑝 ∶ 𝑃 𝑛

𝐴(𝑎)) → 𝑄Σ𝐴(𝑎, 𝜄𝑛
𝐴(𝑝))

by induction on 𝑛.
In the zero case, define

𝑡0
𝐵(𝑏) ∶= ex-falso

𝑡0
𝐴(𝑎0, refl) ∶= 𝑞0,

and in the successor case, define

𝑡𝑛+1
𝐵 (𝑏) ∶= dep-cogap(𝑑𝑛

𝐵(𝑏))
𝑡𝑛+1
𝐴 (𝑎) ∶= dep-cogap(𝑑𝑛

𝐴(𝑎)).

The coherences 𝐾𝑛
𝐵 and 𝐾𝑛

𝐴 can be recovered from the computation rules of
𝑡𝑛+1
𝐵 and 𝑡𝑛+1

𝐴 , respectively.

Construction 4.3.6. Define the family of coherences

𝐾𝐵 ∶ (𝑛 ∶ ℕ)(𝑏 ∶ 𝐵)(𝑝 ∶ 𝑃 𝑛
𝐵(𝑏)) → tr𝑄Σ𝐵(𝑏)(𝜅𝑛

𝐵(𝑝), 𝑡𝑛
𝐵(𝑏, 𝑝)) = 𝑡𝑛+1

𝐵 (𝑏, incl𝑛𝐵 𝑝)

by case analysis on 𝑛. In the zero case, define

𝐾0
𝐵(𝑏) ∶= ex-falso,

and in the successor case, unfold the definition of 𝑡𝑛+2
𝐵 (𝑏) as the dependent co-

gap of the cocone 𝑑𝑛+1
𝐵 (𝑏), which comes equipped with the computation rule

𝑡𝑛+2
𝐵 (incl𝑛+1

𝐵 (𝑝)) = tr𝑄Σ𝐵(𝑏)(𝜅𝑛+1
𝐵 (𝑝), 𝑡𝑛+1

𝐵 (𝑏, 𝑝)),

which may be inverted to get the desired identification.

Construction 4.3.7. Define the family of coherences

𝐾𝐴 ∶ (𝑛 ∶ ℕ)(𝑎 ∶ 𝐴)(𝑝 ∶ 𝑃 𝑛
𝐴(𝑎)) → tr𝑄Σ𝐴(𝑎)(𝜅𝑛

𝐴(𝑝), 𝑡𝑛
𝐴(𝑎, 𝑝)) = 𝑡𝑛+1

𝐴 (𝑎, incl𝑛𝐴 𝑝)

by case analysis on 𝑛. In both cases, the identification 𝐾•
𝐴(𝑎, 𝑝) is the inverse of

the computation rule of 𝑡𝑛+1
𝐴 as the dependent cogap of 𝑑𝑛

𝐴(𝑎).

The maps and coherences fit together to define dependent cocones under
the sequential diagrams 𝑃 •

𝐵(𝑎) and 𝑃 •
𝐴(𝑏), which induce dependent maps out

of their respective colimits.

Construction 4.3.8. Define the maps

𝑡𝐴 ∶ (𝑎 ∶ 𝐴)(𝑝 ∶ 𝑃 ∞
𝐴 (𝑎)) → 𝑄Σ𝐴(𝑎, 𝑝)

𝑡𝐵 ∶ (𝑏 ∶ 𝐵)(𝑝 ∶ 𝑃 ∞
𝐵 (𝑏)) → 𝑄Σ𝐵(𝑏, 𝑝)

using the dependent universal property of sequential colimits of 𝑃 ∞
𝐴 (𝑎) and

𝑃 ∞
𝐵 , from the families of dependent cocones

(𝜆𝑎 → (𝜆𝑛 → 𝑡𝑛
𝐴, 𝜆𝑛 → 𝐾𝑛

𝐴)) ∶ (𝑎 ∶ 𝐴) → dep-coconeℕ(𝑃 •
𝐴(𝑎), 𝑄Σ𝐴(𝑎))

(𝜆𝑏 → (𝜆𝑛 → 𝑡𝑛
𝐵, 𝜆𝑛 → 𝐾𝑛

𝐵)) ∶ (𝑏 ∶ 𝐵) → dep-coconeℕ(𝑃 •
𝐵(𝑏), 𝑄Σ𝐵(𝑏)).

76

It remains to define the families of identifications 𝑡𝑛
𝑆 and coherences 𝐾𝑛

𝑆 .

Lemma 4.3.9. For all natural numbers 𝑛, elements 𝑠 ∶ 𝑆 and 𝑝 ∶ 𝑃 𝑛
𝐴(𝑓𝑠), there is an

identification

𝑡𝑛+1
𝐵 (𝑔𝑠)(𝑝 •𝑛 𝑠) = tr𝑄Σ𝐵(𝑔𝑠)(𝐶𝑛(𝑠, 𝑝), 𝑄Σ𝑆(𝑠, 𝜄𝑛

𝐴(𝑝), 𝑓𝑠, 𝑡𝑛
𝐴(𝑝))).

Proof. Doing case analysis on 𝑛 allows the underlying dependent cocones to
compute, and the identification holds by the computation rule of dep-cogap.

Construction 4.3.10. Given a natural number 𝑛, construct the family of identi-
fications

𝑡𝑛
𝑆 ∶ (𝑠 ∶ 𝑆)(𝑝 ∶ 𝑃 𝑛

𝐴(𝑓𝑠)) → 𝑄Σ𝑆(𝑠, 𝜄𝑛
𝐴(𝑝), 𝑡𝐴(𝑓𝑠, 𝜄𝑛

𝐴(𝑝))) = 𝑡𝐵(𝑔𝑠, (𝜄𝑛
𝐴(𝑝)) •∞ 𝑠)

by concatenating

𝑄Σ𝑆(𝑠, 𝜄𝑛
𝐴(𝑝), 𝑡𝐴(𝑓𝑠, 𝜄𝑛

𝐴(𝑝)))

𝑄Σ𝑆(𝑠, 𝜄𝑛
𝐴(𝑝), 𝑡𝑛

𝐴(𝑓𝑠, 𝑝))

𝑡𝐵(𝑔𝑠, (𝜄𝑛
𝐴(𝑝)) •∞ 𝑠),

where the top identification is obtained from the computation rule formaps out
of sequential colimits defined by dependent cocones, and the bottom identifi-
cation follows from the observation that there is an identification

tr𝑄Σ𝐵(𝑔𝑠)(𝐶𝑛(𝑠, 𝑝), 𝑄Σ𝑆(𝑠, 𝜄𝑛
𝐴(𝑝), 𝑡𝑛

𝐴(𝑓𝑠, 𝑝)))

𝑡𝑛+1
𝐵 (𝑔𝑠, 𝑝 •𝑛 𝑠)

𝑡𝐵(𝑔𝑠, 𝜄𝑛+1
𝐵 (𝑝 •𝑛 𝑠))

tr𝑄Σ𝐵(𝑔𝑠)(𝐶𝑛(𝑠, 𝑝), 𝑡𝐵(𝑔𝑠, (𝜄𝑛
𝐴(𝑝)) •∞ 𝑠)),

where the top identification is Lemma 4.3.9, the middle identification is the
computation rule of 𝑡𝐵, and the bottom identification is the inverse of
apd

𝑡𝐵(𝑔𝑠)
(𝐶𝑛(𝑠, 𝑝)). We may “unapply” the transport from the composite, be-

cause transporting is an equivalence.

At the time of writing, the coherences 𝐾𝑛
𝑆 have not been informally nor for-

mally constructed, neither here nor in available published literature byWärn or
anyone else. We leave their existence as a conjecture, and claim only a partial
proof of correctness.

77

Conjecture 4.3.11. The coherences 𝐾𝑛
𝑆 exist.

Construction 4.3.12. Construct the family of coherences

𝑡𝑆 ∶ (𝑠 ∶ 𝑆)(𝑝 ∶ 𝑃 ∞
𝐴 (𝑓𝑠)) → 𝑄Σ𝑆(𝑠, 𝑝, 𝑡𝐴(𝑓𝑠, 𝑝)) = 𝑡𝐵(𝑔𝑠, 𝑝 •∞ 𝑠)

using the dependent universal property of 𝑃 ∞
𝐴 (𝑓𝑠), from the families of depen-

dent cocones

(𝜆𝑠 → (𝜆𝑛 → 𝑡𝑛
𝑆, 𝜆𝑛 → 𝐾𝑛

𝑆)) ∶
(𝑠 ∶ 𝑆) → dep-coconeℕ(𝑃 •

𝐴(𝑓𝑠), 𝜆𝑝 → (𝑄Σ𝑆(𝑠, 𝑝, 𝑡𝐴(𝑓𝑠, 𝑝)) = 𝑡𝐵(𝑔𝑠, 𝑝 •∞ 𝑠)))

Theorem 4.3.13. Assuming Conjecture 4.3.11 holds, the descent data (𝑃 ∞
𝐴 , 𝑃 ∞

𝐵 , − •∞ 𝑠)
is an identity system at refl∞(𝑎0).

Proof. Thedata (𝑡𝐴, 𝑡𝐵, 𝑡𝑆) forman element of sect(𝑄Σ𝐴, 𝑄Σ𝐵, 𝑄Σ𝑆), whichmakes
(𝑃 ∞

𝐴 , 𝑃 ∞
𝐵 , − •∞ 𝑠) an identity system by Lemma 2.4.9.

Corollary 4.3.14. Assuming Conjecture 4.3.11 holds, there are families of equivalences

𝑒𝐴 ∶ (𝑎 ∶ 𝐴) → (inl(𝑎0) = inl(𝑎)) ≃ 𝑃 ∞
𝐴 (𝑎)

𝑒𝐵 ∶ (𝑏 ∶ 𝐵) → (inl(𝑎0) = inr(𝑏)) ≃ 𝑃 ∞
𝐵 (𝑏)

satisfying 𝑒𝐴(𝑎0, refl) = refl∞, and for every 𝑠 ∶ 𝑆 a commuting square

(inl(𝑎0) = inl(𝑓𝑠)) 𝑃 ∞
𝐴 (𝑓𝑠)

(inl(𝑎0) = inr(𝑔𝑠)) 𝑃 ∞
𝐵 (𝑔𝑠).

𝑒𝐴(𝑓𝑠)

−•(𝐻𝑠) −•∞𝑠

𝑒𝐵(𝑔𝑠)

Proof. By Theorem 2.4.11 and Theorem 4.3.13, there is a unique equivalence of
descent data 𝑒 ∶ (𝐼𝐴, 𝐼𝐵, 𝐼𝑆) ≃ (𝑃 ∞

𝐴 , 𝑃 ∞
𝐵 , − •∞ −) sending refl to refl∞.

78

Chapter 5

Conclusion

The goal of the thesis was to improve existing infrastructure for working with
homotopy pushouts in the agda-unimath library, and formalize existing results
from the literature. Specifically the descent property, the flattening lemma, and
the induction principle of identity types of pushouts were successfully formal-
ized, properly documented, and integrated into the library. In an attempt to
formalize the zigzag construction of identity types of pushouts, infrastructure
for coequalizers and sequential colimits was developed. The zigzag construc-
tionwas formalized, but it has not been shown to satisfy the induction principle
of identity types of pushouts. Progress was made, but one coherence condition
remains unproven.

Future work

There is an obvious step to continue the presented work, which is to complete
the proof of correctness of the zigzag construction. Additional insight into
strategies of its proof might be necessary, for example using the calculus of de-
pendent identifications to abstract the transports, or formulating general lem-
mas about type families over sequential diagrams connected by a zigzag. This
abstraction has not been explored in the thesis for its perceived low applicabil-
ity.

The inductive definition of 𝑑𝑛
𝐵 and 𝑑𝑛

𝐴 could be improved by removing con-
tractible data, i.e. the right map of 𝑑𝑛

𝐴 and the witness 𝑅𝑛.
The thesis also does not attempt to formalize applications of the zigzag con-

struction. Wärn presents truncatedness and connectivity results as applications
of the construction. For reasoning about the zigzag construction, more results
about sequential colimits might be necessary, particularly the full “generalized
flattening lemma” [17]. While the paper presents a proof in Homotopy Type
Theory, it does so in a context with judgmental computation rules for sequen-
tial colimits, which are not present in our setting.

79

https://unimath.github.io/agda-unimath/

80

Bibliography

1. ACZEL, Peter. On Voevodsky’s Univalence Axiom. In: Mathematical Logic:
Proof Theory, Constructive Mathematics. European Mathematical Society -
EMS - Publishing House GmbH, 2012, vol. 8, pp. 2963–3002. No. 4. issn
1660-8941. Available from doi: 10.4171/owr/2011/52 (cit. on p. 10).

2. AGDADEVELOPERS.Agda. 2024. Version 2.6.4.Available also from: https:
//agda.readthedocs.io/ (cit. on pp. v, 3, 63).

3. AWODEY, Steve;GAMBINO,Nicola; SOJAKOVA,Kristina. Inductive Types
inHomotopyTypeTheory. In:Proceedings of the 2012 27th Annual IEEE/ACM
Symposium on Logic in Computer Science. NewOrleans, Louisiana: IEEECom-
puter Society, 2012, pp. 95–104. LICS ’12. isbn 9780769547695. Available
from doi: 10.1109/LICS.2012.21 (cit. on p. 19).

4. AWODEY, Steve; GARNER, Richard; MARTIN-LÖF, Per; VOEVODSKY,
Vladimir. Mini-Workshop: The Homotopy Interpretation of Constructive
Type Theory. Oberwolfach Reports. 2011, vol. 8, no. 1, pp. 609–638. issn 1660-
8941. Available from doi: 10.4171/owr/2011/11 (cit. on p. 3).

5. BRUNERIE, Guillaume. On the homotopy groups of spheres in homotopy type
theory. 2016. Available fromarXiv: 1606.05916 [math.AT]. PhD thesis. Lab-
oratoire Jean-Alexandre Dieudonné (cit. on pp. v, 3).

6. HURKENS, Antonius J. C. A Simplification of Girard’s Paradox. In: Pro-
ceedings of the Second International Conference on Typed Lambda Calculi and
Applications. Berlin, Heidelberg: Springer-Verlag, 1995, pp. 266–278. TLCA
’95. isbn 354059048X (cit. on p. 5).

7. KRAUS, Nicolai; von RAUMER, Jakob. Path spaces of higher inductive
types in homotopy type theory. In:Proceedings of the 34th Annual ACM/IEEE
Symposium on Logic in Computer Science. Vancouver, Canada: IEEE Press,
2019. LICS ’19 (cit. on pp. v, 28, 33).

8. LICATA, Daniel R.; SHULMAN, Michael. Calculating the Fundamental
Groupof theCircle inHomotopyTypeTheory. In: 2013 28th Annual ACM/IEEE
Symposium on Logic in Computer Science. 2013, pp. 223–232. issn 1043-6871.
Available from doi: 10.1109/LICS.2013.28 (cit. on p. 10).

9. MARTIN-LÖF, Per. An Intuitionistic Theory of Types: Predicative Part. In:
ROSE, H.E.; SHEPHERDSON, J.C. (eds.). Logic Colloquium ’73. Elsevier,
1975, vol. 80, pp. 73–118. Studies in Logic and the Foundations of Math-
ematics. issn 0049-237X. Available from doi: 10.1016/S0049-237X(08)
71945-1 (cit. on p. 3).

81

https://doi.org/10.4171/owr/2011/52
https://agda.readthedocs.io/
https://agda.readthedocs.io/
https://doi.org/10.1109/LICS.2012.21
https://doi.org/10.4171/owr/2011/11
https://arxiv.org/abs/1606.05916
https://doi.org/10.1109/LICS.2013.28
https://doi.org/10.1016/S0049-237X(08)71945-1
https://doi.org/10.1016/S0049-237X(08)71945-1

10. NORDSTRÖM, Bengt; PETERSSON, Kent; SMITH, Jan M. Programming in
Martin-Löf’s type theory: an introduction. USA: Clarendon Press, 1990. isbn
0198538146 (cit. on p. 3).

11. PAULIN-MOHRING, Christine. Inductive Definitions in the system Coq -
Rules and Properties. In: Proceedings of the International Conference on Typed
Lambda Calculi and Applications. Berlin, Heidelberg: Springer-Verlag, 1993,
pp. 328–345. TLCA ’93. isbn 3540565175 (cit. on p. 5).

12. RIJKE, Egbert. Classifying Types. 2019. Available from arXiv: 1906.09435
[math.LO]. PhD thesis. Carnegie Mellon University (cit. on pp. v, 3, 19).

13. RIJKE, Egbert. Introduction to Homotopy Type Theory. 2022. Available from
arXiv: 2212.11082 [math.LO] (cit. on pp. 3, 5, 83).

14. RIJKE, Egbert. Introduction to Homotopy Type Theory. 2022. Available also
from: https://github.com/martinescardo/HoTTEST-Summer-School/
blob/06dab2ca8ea0c760ac2dcb40006c280d619e5368/HoTT/hott-intro.
pdf. Unpublished preprint used as study material for the HoTTEST Sum-
mer School 2022 (cit. on pp. 18, 19).

15. RIJKE, Egbert; STENHOLM,Elisabeth; PRIETO-CUBIDES, Jonathan; BAKKE,
Fredrik; ŠTĚPANČÍK, Vojtěch, et al. The agda-unimath library. 2024. Avail-
able also from: https://github.com/UniMath/agda-unimath/. Accessed
on 2024-17-07 (cit. on pp. v, 3).

16. SOJAKOVA, Kristina. Higher Inductive Types as Homotopy-Initial Alge-
bras. SIGPLAN Not. 2015, vol. 50, no. 1, pp. 31–42. issn 0362-1340. Available
from doi: 10.1145/2775051.2676983 (cit. on p. 19).

17. SOJAKOVA, Kristina; van DOORN, Floris; RIJKE, Egbert. Sequential Col-
imits inHomotopyTypeTheory. In:Proceedings of the 35th Annual ACM/IEEE
Symposium on Logic in Computer Science. Saarbrücken, Germany: Associa-
tion forComputingMachinery, 2020, pp. 845–858. LICS ’20. isbn 9781450371049.
Available from doi: 10.1145/3373718.3394801 (cit. on pp. v, 3, 42, 47, 51,
57, 79, 84).

18. THE UNIVALENT FOUNDATIONS PROGRAM. Homotopy Type Theory:
Univalent Foundations of Mathematics. Institute for Advanced Study: https:
//homotopytypetheory.org/book, 2013 (cit. on pp. 3, 5, 9).

19. WÄRN, David. Path Spaces of Pushouts. 2023. Available also from: https:
//dwarn.se/po-paths.pdf. Accessed on 2023-30-09 (cit. on pp. v, 3, 4, 51,
63, 66).

20. WÄRN, David. Path Spaces of Pushouts. 2024. Available from arXiv: 2402.
12339 [math.AT] (cit. on pp. 3, 66).

82

https://arxiv.org/abs/1906.09435
https://arxiv.org/abs/1906.09435
https://arxiv.org/abs/2212.11082
https://github.com/martinescardo/HoTTEST-Summer-School/blob/06dab2ca8ea0c760ac2dcb40006c280d619e5368/HoTT/hott-intro.pdf
https://github.com/martinescardo/HoTTEST-Summer-School/blob/06dab2ca8ea0c760ac2dcb40006c280d619e5368/HoTT/hott-intro.pdf
https://github.com/martinescardo/HoTTEST-Summer-School/blob/06dab2ca8ea0c760ac2dcb40006c280d619e5368/HoTT/hott-intro.pdf
https://github.com/UniMath/agda-unimath/
https://doi.org/10.1145/2775051.2676983
https://doi.org/10.1145/3373718.3394801
https://homotopytypetheory.org/book
https://homotopytypetheory.org/book
https://dwarn.se/po-paths.pdf
https://dwarn.se/po-paths.pdf
https://arxiv.org/abs/2402.12339
https://arxiv.org/abs/2402.12339

Appendix A

List of attachments

Attachments consist of Git diff files, most of which were submitted as pull re-
quests to the agda-unimath GitHub repository. They may be found in the
attachments directory in the thesis source repository, and should also be in-
cluded with any distribution of the thesis.

• 535-refactor-descent-circle.diff (PR) updates formalization of the
descent property of the circle to be consistent with its description in [13].

• 709-descent-circle.diff (PR) documents the above and extends the for-
malization with characterization of other kinds of type families over the
circle.

• 724-foundation-precomp-concat-squares.diff (PR) shows commuta-
tivity of pasting and exponentiation of commuting squares.

• 725-foundation-horizontal-paste-pushouts.diff (PR) formalizes hor-
izontal pasting of pushouts squares.

• 755-foundation-vertical-paste-pushouts.diff (PR) formalizes verti-
cal pasting of pushouts squares.

• 758-foundation-unpaste-pushouts.diff (PR) formalizes the inverse di-
rection of pasting properties of pushout squares.

• 764-flattening-pushouts-family.diff (PR) formalizes the flattening
lemma for pushouts, without descent data.

• 792-coequalizers.diff (PR) introduces coequalizers to the extent de-
scribed in the thesis.

• 816-flattening-pushouts-descent-data.diff (PR) formalizes the flat-
tening lemma for pushouts, using descent data.

• 831-flattening-coequalizers.diff (PR) refactors the flattening lemma
for coequalizers to be derived from the flattening lemma for pushouts.

• 841-sequential-colimits.diff (PR) defines anddocuments basic infras-
tructure of sequential diagrams and their colimits in terms of universal
properties.

83

https://unimath.github.io/agda-unimath/
https://github.com/UniMath/agda-unimath
https://github.com/VojtechStep/homotopy-pushouts
https://github.com/UniMath/agda-unimath/pull/535
https://github.com/UniMath/agda-unimath/pull/709
https://github.com/UniMath/agda-unimath/pull/724
https://github.com/UniMath/agda-unimath/pull/725
https://github.com/UniMath/agda-unimath/pull/755
https://github.com/UniMath/agda-unimath/pull/758
https://github.com/UniMath/agda-unimath/pull/764
https://github.com/UniMath/agda-unimath/pull/792
https://github.com/UniMath/agda-unimath/pull/816
https://github.com/UniMath/agda-unimath/pull/831
https://github.com/UniMath/agda-unimath/pull/841

• 919-functoriality-sequential-colimits.diff (PR) adds commuting
prisms and formalizes functoriality of taking the standard sequential col-
imit, to the extent described in the thesis.

• 972-flattening-sequential-colimits-family.diff (PR) formalizes the
flattening lemma for sequential colimits, without descent data.

• 978-refactor-functoriality-sequential-colimits.diff (PR) general-
izes functoriality of sequential colimits from only the standard ones to ar-
bitrary cocones satisfying the universal property.

• 988-refactor-lifts-families.diff (PR) refactors and documents for-
malization of lifts of families of elements, which underpin the equivalence
of the dependent and non-dependent pullback properties of pushouts.

• 1070-shifts-sequential-colimits.diff (PR) formalizes shifts of
sequential diagrams and related concepts, and its preservation of sequen-
tial colimits.

• 1098-refactor-coequalizers.diff (PR) adds infrastructure for double
arrows, and adopts coequalizers to use it.

• 1109-flattening-sequential-colimits-descent-data.diff (PR) adds
descent data over sequential diagrams and the flattening lemma for se-
quential colimits, using descent data.

• 1117-equivalences-sequential-comp.diff (PR) formalizes the fact that
equivalences are closed under sequential composition.

• 1129-zigzags-sequential-diagrams.diff (PR) formalizes zigzags of se-
quential diagrams, to the extent described in the thesis.

• 1144-sequential-colimits-overview.diff (PR) adds a summary page
referencing formalization of sequential colimits following the outline of
the paper by Sojakova, van Doorn and Rijke [17].

• 1145-descent-pushouts.diff (PR) refactors, extends and documents the
descent property of pushouts.

• 1148-characterization-families-pushouts.diff (PR) adds characteri-
zations of families of functions and families of equivalences over pushouts,
and the family of based identity types.

• 1150-identity-systems-descent-pushouts.diff (PR) formalizes the in-
duction principle of identity types of pushouts, using descent data.

• zigzag-construction-identity-types.diff formalizes the zigzag con-
struction and its partial proof of correctness, to the extent of the thesis.
May be applied on top of latest master branch of agda-unimath as of writ-
ing, commit 98119d71307593f533f2539882430f157330c07e.

84

https://github.com/UniMath/agda-unimath/pull/919
https://github.com/UniMath/agda-unimath/pull/972
https://github.com/UniMath/agda-unimath/pull/978
https://github.com/UniMath/agda-unimath/pull/988
https://github.com/UniMath/agda-unimath/pull/1070
https://github.com/UniMath/agda-unimath/pull/1098
https://github.com/UniMath/agda-unimath/pull/1109
https://github.com/UniMath/agda-unimath/pull/1117
https://github.com/UniMath/agda-unimath/pull/1129
https://github.com/UniMath/agda-unimath/pull/1144
https://github.com/UniMath/agda-unimath/pull/1145
https://github.com/UniMath/agda-unimath/pull/1148
https://github.com/UniMath/agda-unimath/pull/1150

	Introduction
	Homotopy Type Theory
	Pushouts
	Universal property
	Descent property
	Flattening lemma
	Identity systems

	Other colimits
	Coequalizers
	Sequential colimits
	Functoriality
	Colimits of shifted sequential diagrams
	Descent property and flattening lemma

	Partial proof of correctness of the zigzag construction
	Zigzags between sequential diagrams
	The zigzag construction of identity types
	Partial proof of correctness

	Conclusion
	Bibliography
	List of attachments

