Towards a Formalization of Wärn's zigzag construction

Vojtěch Štěpančík

Outline

- 1 Motivation
- 2 Zigzag construction
- 3 Proof of correctness
- 4 Conclusion

Pushout of $A \overset{f}{\leftarrow} S \overset{g}{\rightarrow} B$ in agda-unimath

 \blacksquare A cocone (i, j, H) is a pushout

Pushout of $A \overset{f}{\leftarrow} S \overset{g}{\rightarrow} B$ in agda-unimath

 \blacksquare A cocone (i, j, H) is a pushout if every cocone under the same span

$$S \xrightarrow{g} B$$

$$\downarrow H \qquad \downarrow J$$

$$A \xrightarrow{i} X$$

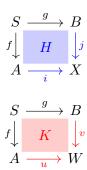
 \blacksquare A cocone (i, j, H) is a pushout if every cocone under the same span induces a unique map $h: X \to W$

$$S \xrightarrow{g} B$$

$$f \downarrow \qquad \qquad \downarrow^{j}$$

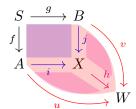
$$A \xrightarrow{i} X$$

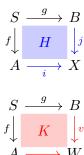
$$W$$



Pushout of $A \stackrel{f}{\leftarrow} S \stackrel{g}{\rightarrow} B$ in agda-unimath

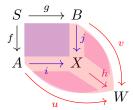
 \blacksquare A cocone (i, j, H) is a pushout if every cocone under the same span induces a unique map $h: X \to W$ which factors W.



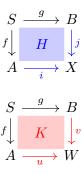


Pushout of $A \overset{f}{\leftarrow} S \overset{g}{\rightarrow} B$ in agda-unimath

 \blacksquare A cocone (i, j, H) is a pushout if every cocone under the same span induces a unique map $h: X \to W$ which factors W.



lacksquare \leftrightarrow "the map from $(X \to W)$ to cocones with vertex W is an equivalence"



 Pushouts are a fundamental method for creating spaces by gluing

¹Wärn. Path Spaces of Pushouts, 2023, https://dwarn.se/po-paths.pdf

- Pushouts are a fundamental method for creating spaces by gluing
- Understanding path spaces gives connectivity and truncation estimates

¹Wärn. Path Spaces of Pushouts, 2023, https://dwarn.se/po-paths.pdf

- Pushouts are a fundamental method for creating spaces by gluing
- Understanding path spaces gives connectivity and truncation estimates
- Fixing $x_0: X$ in a pushout, give $I_{x_0}: X \to \mathcal{U}$ and $I_{x_0}(x) \simeq (x_0 =_X x)$

¹Wärn. Path Spaces of Pushouts, 2023, https://dwarn.se/po-paths.pdf

- Pushouts are a fundamental method for creating spaces by gluing
- Understanding path spaces gives connectivity and truncation estimates
- Fixing $x_0: X$ in a pushout, give $I_{x_0}: X \to \mathcal{U}$ and $I_{x_0}(x) \simeq (x_0 =_X x)$
- Wärn described the "zigzag construction" in 2023

¹Wärn. Path Spaces of Pushouts, 2023, https://dwarn.se/po-paths.pdf

- Pushouts are a fundamental method for creating spaces by gluing
- Understanding path spaces gives connectivity and truncation estimates
- Fixing $x_0: X$ in a pushout, give $I_{x_0}: X \to \mathcal{U}$ and $I_{x_0}(x) \simeq (x_0 =_X x)$
- Wärn described the "zigzag construction" in 2023
- No formalization existed for almost two years, until now!

¹Wärn. Path Spaces of Pushouts, 2023, https://dwarn.se/po-paths.pdf

Setting

- Book HoTT
- Built with agda-unimath², with plans to upstream

²Rijke et al. agda-unimath, https://github.com/UniMath/agda-unimath

Motivation 0000

- Book HoTT
- Built with agda-unimath², with plans to upstream

Consequences of choosing agda-unimath

- Postulated pushouts
- Reusable code
- Performance matters

²Riike et al. agda-unimath, https://github.com/UniMath/agda-unimath

Conventions

Motivation 0000

 \blacksquare Fix a span $A \overset{f}{\leftarrow} S \overset{g}{\rightarrow} B$ and its pushout (i,j,H) on X

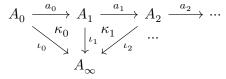
Conventions

- Fix a span $A \xleftarrow{f} S \xrightarrow{g} B$ and its pushout (i, j, H) on X
- For postulated pushouts use (inl, inr, glue)

Conventions

Motivation 0000

- Fix a span $A \stackrel{f}{\leftarrow} S \stackrel{g}{\rightarrow} B$ and its pushout (i, j, H) on X
- For postulated pushouts use (inl, inr, glue) → ↓ glue ↓inr
- Recall sequential colimits of diagrams A_{\bullet}



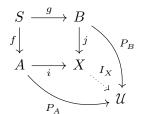
or

$$A_0 \xrightarrow{a_0} A_1 \xrightarrow{a_1} A_2 \xrightarrow{a_2} \cdots \xrightarrow{\iota} A_{\infty}$$

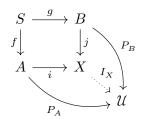
- 2 Zigzag construction
- 4 Conclusion

■ The goal is to construct a type family $I_{x_0}:X\to\mathcal{U}$

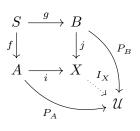
- The goal is to construct a type family $I_{x_0}:X\to\mathcal{U}$
- \blacksquare Cocone with vertex \mathcal{U}

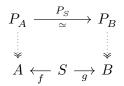


- The goal is to construct a type family $I_{x_0}:X\to\mathcal{U}$
- Cocone with vertex *U*
- By univalence, $P_A(fs) = P_B(gs)$ is equivalently $P_A(fs) \simeq P_B(gs)$

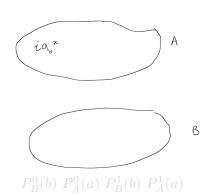


- The goal is to construct a type family $I_{x_0}:X\to\mathcal{U}$
- lacksquare Cocone with vertex $\mathcal U$
- By univalence, $P_A(fs) = P_B(gs)$ is equivalently $P_A(fs) \simeq P_B(gs)$
- **Descent data** (P_A, P_B, P_S) : type families and equivalences $P_S(s): P_A(fs) \simeq P_B(gs)$

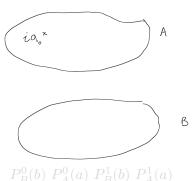




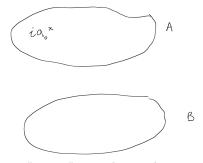
 $\blacksquare P_A(a)$ and $P_B(b)$ defined as sequential colimits



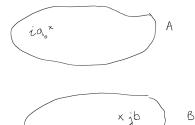
- $\blacksquare P_A(a)$ and $P_B(b)$ defined as sequential colimits
- $lackbox{ } P^n_{\ A}(a) :=$ "type of paths from $i(a_0)$ to i(a) allowing at most n "crossings" from B to A"



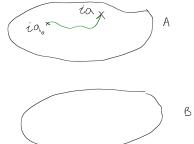
- $\blacksquare P_A(a)$ and $P_B(b)$ defined as sequential colimits
- $P_A^n(a) :=$ "type of paths from $i(a_0)$ to i(a) allowing at most n "crossings" from B to A"
- $P_{\mathcal{B}}^{0}(b) := 0, P_{\mathcal{A}}^{0}(a) := (a_{0} =_{\mathcal{A}} a)$



- $\blacksquare P_A(a)$ and $P_B(b)$ defined as sequential colimits
- $Arr P^n_{\scriptscriptstyle A}(a) :=$ "type of paths from $i(a_0)$ to i(a) allowing at most n "crossings" from B to A"
- $P_{\mathcal{B}}^{0}(b) := 0, P_{\mathcal{A}}^{0}(a) := (a_{0} =_{\mathcal{A}} a)$

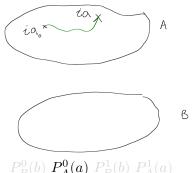


- $\blacksquare P_A(a)$ and $P_B(b)$ defined as sequential colimits
- $Arr P^n_{\scriptscriptstyle A}(a) :=$ "type of paths from $i(a_0)$ to i(a) allowing at most n "crossings" from B to A"
- $P_{\mathcal{B}}^{0}(b) := 0, P_{\mathcal{A}}^{0}(a) := (a_{0} =_{\mathcal{A}} a)$

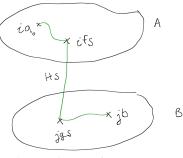


$$P_B^0(b) P_A^0(a) P_B^1(b) P_A^1(a)$$

- $\blacksquare P_A(a)$ and $P_B(b)$ defined as sequential colimits
- $Arr P^n_{\scriptscriptstyle A}(a) :=$ "type of paths from $i(a_0)$ to i(a) allowing at most n "crossings" from B to A"
- $P_{\mathcal{B}}^{0}(b) := 0, P_{\mathcal{A}}^{0}(a) := (a_{0} =_{A} a)$
- lacksquare $P_A^{n+1}(a)$ is either $P_A^n(a)$, or $P_{\mathcal{D}}^{n+1}(qs)$ and a path fs = A

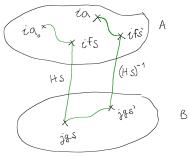


- $\blacksquare P_A(a)$ and $P_B(b)$ defined as sequential colimits
- $Arr P^n_{\scriptscriptstyle A}(a) :=$ "type of paths from $i(a_0)$ to i(a) allowing at most n "crossings" from B to A"
- $P_{\mathcal{B}}^{0}(b) := 0, P_{\mathcal{A}}^{0}(a) := (a_{0} =_{A} a)$
- lacksquare $P_A^{n+1}(a)$ is either $P_A^n(a)$, or $P_{\mathcal{D}}^{n+1}(qs)$ and a path fs = A



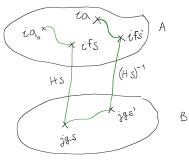
$$P_{B}^{0}(b) \ P_{A}^{0}(a) \ P_{B}^{1}(b) \ P_{A}^{1}(a)$$

- $\blacksquare P_A(a)$ and $P_B(b)$ defined as sequential colimits
- $Arr P^n_{\scriptscriptstyle A}(a) :=$ "type of paths from $i(a_0)$ to i(a) allowing at most n"crossings" from B to A"
- $P_{\mathcal{B}}^{0}(b) := 0, P_{\mathcal{A}}^{0}(a) := (a_{0} =_{A} a)$
- lacksquare $P_A^{n+1}(a)$ is either $P_A^n(a)$, or $P_{\mathcal{D}}^{n+1}(qs)$ and a path fs = A



$$P_B^0(b) \ P_A^0(a) \ P_B^1(b) \ P_A^1(a)$$

- $\blacksquare P_A(a)$ and $P_B(b)$ defined as sequential colimits
- $P_A^n(a) :=$ "type of paths from $i(a_0)$ to i(a) allowing at most n "crossings" from B to A"
- $P_{\mathcal{B}}^{0}(b) := 0, P_{\mathcal{A}}^{0}(a) := (a_{0} =_{A} a)$
- $P_{\Lambda}^{n+1}(a)$ is either $P_{\Lambda}^{n}(a)$, or $P_B^{n+1}(gs)$ and a path fs = A
- "Modulo backtracking": $P_{\Lambda}^{n+1}(a)$ and $P_{\mathcal{D}}^{n+1}(b)$ are pushouts



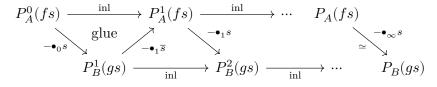
$$P_B^0(b) \ P_A^0(a) \ P_B^1(b) \ P_A^1(a)$$

Construction of the equivalences

■ To get $P_S(s)$, construct a zigzag between $P_A^{\bullet}(fs)$ and $P_B^{\bullet}(gs)$:

Construction of the equivalences

■ To get $P_S(s)$, construct a zigzag between $P_A^{\bullet}(fs)$ and $P_B^{\bullet}(gs)$:



■ The zigzag gives an equivalence $P_S(s) := - \bullet_{\infty} s$, completing (P_A, P_B, P_S) , defining I_{x_0}

Proof of correctness •0000

- 3 Proof of correctness
- 4 Conclusion

Identity systems

 \blacksquare To show $I_{x_0}(x) \simeq (x_0 = x),$ it suffices to show that I_{x_0} is an identity system

Proof of correctness

³Restatement of Kraus, von Raumer. Path Spaces of Higher Inductive Types in Homotopy Type Theory, 2019

Identity systems

■ To show $I_{x_0}(x) \simeq (x_0 = x)$, it suffices to show that I_{x_0} is an identity system

Proof of correctness

• We can do that by showing that (P_A, P_B, P_S) is an identity svstem³

³Restatement of Kraus, von Raumer. Path Spaces of Higher Inductive Types in Homotopy Type Theory, 2019

Identity systems

■ To show $I_{x_0}(x) \simeq (x_0 = x)$, it suffices to show that I_{x_0} is an identity system

Proof of correctness

• We can do that by showing that (P_A, P_B, P_S) is an identity svstem³

Definition (Induction principle of identity types of pushouts)

 (P_A, P_B, P_S) with $p_0 : P_A(a_0)$ is an **identity system** if for all dependent descent data $\mathcal{Q} := (Q_A, Q_B, Q_S)$, the evaluation map ev-refl: $sect(Q) \to Q_A(p_0)$ has a section.

³Restatement of Kraus, von Raumer. Path Spaces of Higher Inductive Types in Homotopy Type Theory, 2019

Identity systems

- To show $I_{x_0}(x) \simeq (x_0 = x)$, it suffices to show that I_{x_0} is an identity system
- We can do that by showing that (P_A, P_B, P_S) is an identity svstem³

Definition (Induction principle of identity types of pushouts)

 (P_A, P_B, P_S) with $p_0: P_A(a_0)$ is an **identity system** if for all dependent descent data $\mathcal{Q} := (Q_A, Q_B, Q_S)$, the evaluation map ev-refl : $sect(Q) \to Q_A(p_0)$ has a section.

• Actually suffices to give a map $Q_A(p_0) \to \operatorname{sect}(Q)$

³Restatement of Kraus, von Raumer. Path Spaces of Higher Inductive Types in Homotopy Type Theory, 2019

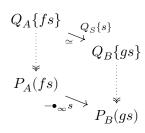
Zigzag construction is an identity system

 $Arr P_A(a_0)$ is pointed at $p_0 := \iota_A^0(\operatorname{refl}_{a_0})$

Zigzag construction is an identity system

- $\blacksquare P_A(a_0)$ is pointed at $p_0 := \iota_A^0(\operatorname{refl}_{a_0})$
- Given

$$\begin{split} Q_A\{a\} : P_A^\infty(a) &\to \mathcal{U} \\ Q_B\{b\} : P_B^\infty(b) &\to \mathcal{U} \\ Q_S\{s\} : (p : P_A^\infty(fs)) &\to Q_A(p) \simeq Q_B(p \bullet_\infty s) \end{split}$$
 and $q_0 : Q_A(p_0)$



Zigzag construction is an identity system

- $\blacksquare P_A(a_0)$ is pointed at $p_0 := \iota_A^0(\operatorname{refl}_{a_0})$

Given
$$Q_A\{a\}:P_A^\infty(a)\to \mathcal{U}$$

$$Q_B\{b\}:P_B^\infty(b)\to \mathcal{U}$$

$$Q_S\{s\}:(p:P_A^\infty(fs))\to Q_A(p)\simeq Q_B(p\bullet_\infty s)$$

$$Q_A\{fs\}$$

$$Q_B\{gs\}$$
 and
$$Q_0:Q_A(p_0), \text{ we need to produce}$$

$$P_A(fs)\underset{s_B\{gs\}}{ s_B\{b\}}:(p:P_A^\infty(a))\to Q_B(p)$$

$$P_B(gs)$$

$$P_B(gs)$$

$$P_B(gs)$$

$$P_B(gs)$$

Proof outline

■ To get $s_A(a)$ and $s_B(b)$, do induction on the colimits $P_A(a)$ and $P_{\mathcal{B}}(b)$: we need dependent functions

$$s_A^n\{a\}: (p:P_A^n(a)) \to Q_A(\iota_A^n(p))$$

 $s_B^n\{b\}: (p:P_B^n(b)) \to Q_B(\iota_B^n(p))$

Proof of correctness

and coherences

Proof outline

■ To get $s_A(a)$ and $s_B(b)$, do induction on the colimits $P_A(a)$ and $P_{\mathcal{B}}(b)$: we need dependent functions

$$\begin{split} s_A^n\{a\} : (p:P_A^n(a)) &\to Q_A(\iota_A^n(p)) \\ s_B^n\{b\} : (p:P_B^n(b)) &\to Q_B(\iota_B^n(p)) \end{split}$$

Proof of correctness

and coherences

■ The maps s_A^n and s_B^n are defined together by induction on n

Proof outline

 \blacksquare To get $s_A(a)$ and $s_B(b)$, do induction on the colimits $P_A(a)$ and $P_B(b)$: we need dependent functions

$$\begin{split} s_A^n\{a\} : (p:P_A^n(a)) \to Q_A(\iota_A^n(p)) \\ s_B^n\{b\} : (p:P_B^n(b)) \to Q_B(\iota_B^n(p)) \end{split}$$

Proof of correctness

and coherences

- lacksquare The maps s_A^n and s_B^n are defined together by induction on n
- \blacksquare Construct $s_S\{s\}$ by proving and using functoriality theorems for sequential colimits

"A homotopy of dependent diagram morphisms induces a homotopy of induced functions": $(s_{\bullet} \sim t_{\bullet}) \to (s_{\infty} \sim t_{\infty})$

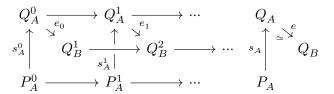
$$\begin{array}{cccc} D_0 & \longrightarrow & D_1 & \longrightarrow & \cdots & & D_{\infty} \\ s_0 & & \uparrow t_0 & s_1 & \uparrow t_1 & & & s_{\infty} & \uparrow t_{\infty} \\ C_0 & \longrightarrow & C_1 & \longrightarrow & \cdots & & C_{\infty} \end{array}$$

- "A homotopy of dependent diagram morphisms induces a homotopy of induced functions": $(s_{\bullet} \sim t_{\bullet}) \to (s_{\infty} \sim t_{\infty})$
- "Taking the colimit preserves composition of a morphism and a dependent morphism": $s_{\infty} \circ f_{\infty} \sim (s_{\bullet} \circ f_{\bullet})_{\infty}$

- "A homotopy of dependent diagram morphisms induces a homotopy of induced functions": $(s_{\bullet} \sim t_{\bullet}) \to (s_{\infty} \sim t_{\infty})$
- "Taking the colimit preserves composition of a morphism and a dependent morphism": $s_{\infty} \circ f_{\infty} \sim (s_{\bullet} \circ f_{\bullet})_{\infty}$

Proof of correctness

"Taking the colimit preserves composition of a fiberwise morphism and a dependent morphism": $e_{\infty} \circ s_{\infty} \sim (e_{\bullet} \circ s_{\bullet})_{\infty}$



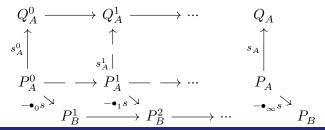
- "A homotopy of dependent diagram morphisms induces a homotopy of induced functions": $(s_{\bullet} \sim t_{\bullet}) \to (s_{\infty} \sim t_{\infty})$
- "Taking the colimit preserves composition of a morphism and a dependent morphism": $s_{\infty} \circ f_{\infty} \sim (s_{\bullet} \circ f_{\bullet})_{\infty}$
- "Taking the colimit preserves composition of a fiberwise morphism and a dependent morphism": $e_{\infty} \circ s_{\infty} \sim (e_{\bullet} \circ s_{\bullet})_{\infty}$
- "Dependent cubes induce a dependent square in the colimit":

- "A homotopy of dependent diagram morphisms induces a homotopy of induced functions": $(s_{\bullet} \sim t_{\bullet}) \to (s_{\infty} \sim t_{\infty})$
- "Taking the colimit preserves composition of a morphism and a dependent morphism": $s_{\infty} \circ f_{\infty} \sim (s_{\bullet} \circ f_{\bullet})_{\infty}$

Proof of correctness

- "Taking the colimit preserves composition of a fiberwise morphism and a dependent morphism": $e_{\infty} \circ s_{\infty} \sim (e_{\bullet} \circ s_{\bullet})_{\infty}$
- "Dependent cubes induce a dependent square in the colimit":

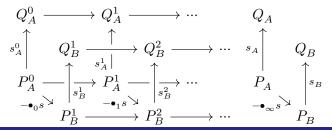
- "A homotopy of dependent diagram morphisms induces a homotopy of induced functions": $(s_{\bullet} \sim t_{\bullet}) \to (s_{\infty} \sim t_{\infty})$
- "Taking the colimit preserves composition of a morphism and a dependent morphism": $s_{\infty} \circ f_{\infty} \sim (s_{\bullet} \circ f_{\bullet})_{\infty}$
- "Taking the colimit preserves composition of a fiberwise morphism and a dependent morphism": $e_{\infty} \circ s_{\infty} \sim (e_{\bullet} \circ s_{\bullet})_{\infty}$
- "Dependent cubes induce a dependent square in the colimit":



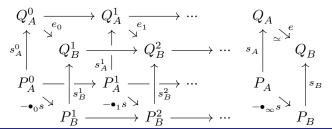
- "A homotopy of dependent diagram morphisms induces a homotopy of induced functions": $(s_{\bullet} \sim t_{\bullet}) \to (s_{\infty} \sim t_{\infty})$
- "Taking the colimit preserves composition of a morphism and a dependent morphism": $s_{\infty} \circ f_{\infty} \sim (s_{\bullet} \circ f_{\bullet})_{\infty}$

Proof of correctness

- "Taking the colimit preserves composition of a fiberwise morphism and a dependent morphism": $e_{\infty} \circ s_{\infty} \sim (e_{\bullet} \circ s_{\bullet})_{\infty}$
- "Dependent cubes induce a dependent square in the colimit":



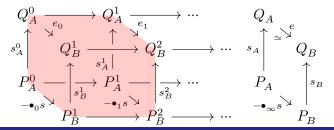
- "A homotopy of dependent diagram morphisms induces a homotopy of induced functions": $(s_{\bullet} \sim t_{\bullet}) \to (s_{\infty} \sim t_{\infty})$
- "Taking the colimit preserves composition of a morphism and a dependent morphism": $s_{\infty} \circ f_{\infty} \sim (s_{\bullet} \circ f_{\bullet})_{\infty}$
- "Taking the colimit preserves composition of a fiberwise morphism and a dependent morphism": $e_{\infty} \circ s_{\infty} \sim (e_{\bullet} \circ s_{\bullet})_{\infty}$
- "Dependent cubes induce a dependent square in the colimit":



- "A homotopy of dependent diagram morphisms induces a homotopy of induced functions": $(s_{\bullet} \sim t_{\bullet}) \to (s_{\infty} \sim t_{\infty})$
- "Taking the colimit preserves composition of a morphism and a dependent morphism": $s_{\infty} \circ f_{\infty} \sim (s_{\bullet} \circ f_{\bullet})_{\infty}$

Proof of correctness

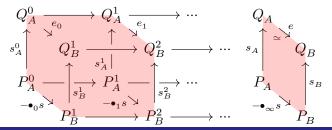
- "Taking the colimit preserves composition of a fiberwise morphism and a dependent morphism": $e_{\infty} \circ s_{\infty} \sim (e_{\bullet} \circ s_{\bullet})_{\infty}$
- "Dependent cubes induce a dependent square in the colimit":



- "A homotopy of dependent diagram morphisms induces a homotopy of induced functions": $(s_{\bullet} \sim t_{\bullet}) \to (s_{\infty} \sim t_{\infty})$
- "Taking the colimit preserves composition of a morphism and a dependent morphism": $s_{\infty} \circ f_{\infty} \sim (s_{\bullet} \circ f_{\bullet})_{\infty}$

Proof of correctness

- "Taking the colimit preserves composition of a fiberwise morphism and a dependent morphism": $e_{\infty} \circ s_{\infty} \sim (e_{\bullet} \circ s_{\bullet})_{\infty}$
- "Dependent cubes induce a dependent square in the colimit":



4 Conclusion

Conclusion

- The construction is formalized and proven correct
- No major issues with formalizing the construction itself
- Defining the sections s_A^n and s_B^n was more difficult, computation-wise
- Drawing the right diagrams helps finding statements of intermediate lemmas, but not so much proving them

Future work

- Formalizing applications
- Generalizing results about sequential colimits
- Optimizing: main file takes ~2.5 minutes⁴, 11 GB of RAM, the rest of the library takes ~7.5 minutes; 93% spent in two definitions I didn't talk about

⁴Intel Core Ultra 7 155H

Related work

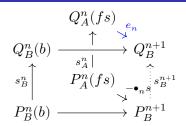
- Wärn's second article on the subject gives an "unstraightened" version of the construction
- Connors and Thorbjørnsen worked on an independent formalization in Rocq, at the time of writing the commutativity square needs to be formalized
- My master's thesis contains a more extensive description of the development of properties of various colimits leading to the formalization of the zigzag construction

Thank you for your time!

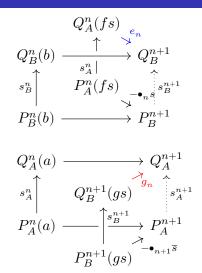
lacksquare $s_A^0(\text{refl}) := q_0$, $s_B^0 := \text{ex-falso}$

- $\blacksquare \ s^0_A({\rm refl}) := q_0, \ s^0_B := {\rm ex\text{-}falso}$
- Next steps by pushout induction

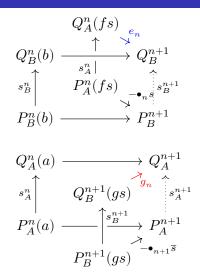
- $\mathbf{s}_A^0(\text{refl}) := q_0, \ s_B^0 := \text{ex-falso}$
- Next steps by pushout induction



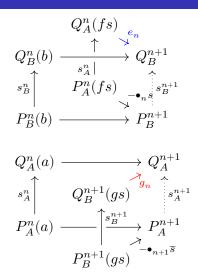
- $\mathbf{s}_A^0(\text{refl}) := q_0, s_B^0 := \text{ex-falso}$
- Next steps by pushout induction



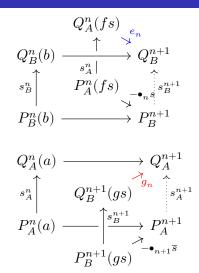
- lacksquare $s_A^0(\text{refl}) := q_0$, $s_B^0 := \text{ex-falso}$
- Next steps by pushout induction
- Multiple choices for g_n



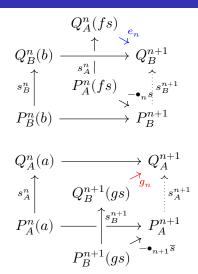
- lacksquare $s_A^0(\text{refl}) := q_0$, $s_B^0 := \text{ex-falso}$
- Next steps by pushout induction
- lacktriangle Multiple choices for g_n
- Action of s_B^{n+1} on glue using $e_n \circ e_n^{-1} \sim \mathrm{id}$



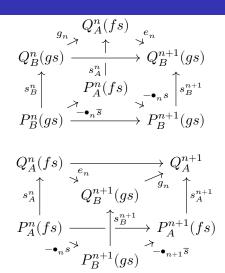
- lacksquare $s_A^0(\text{refl}) := q_0$, $s_B^0 := \text{ex-falso}$
- Next steps by pushout induction
- \blacksquare Multiple choices for g_n
- Action of s_B^{n+1} on glue using $e_n \circ e_n^{-1} \sim \mathrm{id}$
- \blacksquare Action of s_A^{n+1} on ${\rm glue}_A$ using the square induced by Q_S and path algebra



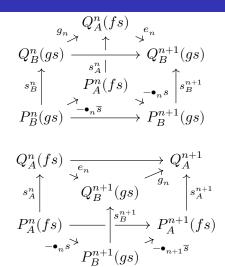
- $\blacksquare \ s^0_A({\rm refl}) := q_0, \ s^0_B := {\rm ex\text{-}falso}$
- Next steps by pushout induction
- \blacksquare Multiple choices for g_n
- Action of s_B^{n+1} on glue using $e_n \circ e_n^{-1} \sim \mathrm{id}$
- \blacksquare Action of s_A^{n+1} on ${\rm glue}_A$ using the square induced by Q_S and path algebra
- $lackbox{ } K_A^n$ and K_B^n hold by computation rules for pushouts, completing s_A and s_B



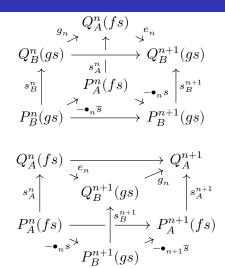
 The prisms can be filled using coherences of computation rules of pushouts



- The prisms can be filled using coherences of computation rules of pushouts
- Pasting the prisms along the diagonal gives almost the correct cubes, the top face needs adjustment



- The prisms can be filled using coherences of computation rules of pushouts
- Pasting the prisms along the diagonal gives almost the correct cubes, the top face needs adjustment
- Proper abstraction and path induction fixes the top face



- The prisms can be filled using coherences of computation rules of pushouts
- Pasting the prisms along the diagonal gives almost the correct cubes, the top face needs adjustment
- Proper abstraction and path induction fixes the top face
- The cubes induce the desired square s_S, which finishes the proof

$$Q_{A}^{n}(fs) \xrightarrow{e_{n}} Q_{B}^{n+1}(gs)$$

$$Q_{B}^{n}(gs) \xrightarrow{\uparrow} Q_{A}^{n+1}(gs)$$

$$\downarrow^{s_{B}^{n}} \qquad \uparrow^{s_{A}^{n}} \qquad \downarrow^{s_{A}^{n+1}} \qquad \downarrow^{s_{B}^{n+1}} \qquad \downarrow^{s_{B}^{n+1}} \qquad \downarrow^{s_{B}^{n+1}} \qquad \downarrow^{s_{B}^{n+1}} \qquad \downarrow^{s_{B}^{n+1}} \qquad \downarrow^{s_{B}^{n+1}} \qquad \downarrow^{s_{A}^{n+1}} \qquad \downarrow^{s_{A}$$